Direccionalidad de los fotorreceptores, su función en visión y en diagnósticos

Understanding photoreceptor directionality in vision and diagnostics

Brian Vohnsen
Advanced Optical Imaging Group
University College Dublin, Irlanda

Structure and optics of the human eye

Cornea

~ 43 dioptres
~ 1.376 refractive index

Lens

~ 18 dioptres
~ Graded index 1.37-1.42
Axial length
$22-25 \mathrm{~mm}$ (or higher)

Retina

~ 70\%
~ 6M cones (S,M,L)
~ 90M rods

Corneal and ocular aberrations

Null-screen corneal aberrometry
With M. Rodríguez-Rodríguez

Hartmann-Shack ocular wavefront sensing without crosstalk

With A. Carmichael Martins

- B. Vohnsen et al., Appl. Opt. 2018
- A. Carmichael and B. Vohnsen, Micromachines 2019

Cones and rods of the human retina

En-face view of parafovea cones and rods

Side view of parafovea cones and rods

Cone photoreceptor diameter ranging from about $2 \mu \mathrm{~m}$ (fovea) to $8 \mu \mathrm{~m}$ (parafovea) Images by courtesy of P. Munro, UCL

Eye and retina

The retina is a tri-dimensional screen

Cones, rods, and ganglion cells

Absorption Spectra of Human Visual Pigments

Phototropism in plants

Photoreceptors are likewise adaptable

Post-cataract surgery

SCE peak displaced towards new pupil centre

Photoreceptors point to collect a maximum of light
(phototropism)

Outline

- The Stiles-Crawford effect(s)
- Photoreceptor waveguides
- Geometrical optics model
- Electromagnetic models
- Myopia, emmetropization, and accommodation
- Directionality in diagnostic imaging
- Conclusions and outlook

Directionality with Maxwellian light

The Stiles-Crawford effect (SCE-I)
Proc. Roy. Soc. 1933

Walter S. Stiles

Brian H. Crawford

Visibility for oblique rays:

$$
\eta(\boldsymbol{r})=\eta_{\max }\left(\boldsymbol{r}_{\max }\right) 10^{-\rho_{S C E}\left|\boldsymbol{r}-\boldsymbol{r}_{\max }\right|^{2}}
$$

Foveal directionality parameter $\square \rho_{S C E} \cong 0.05 / \mathrm{mm}^{2}$

Maxwellian light

Real-eye cone-photoreceptor waveguides

y
$>$ Fovea cones: single (or few) mode waveguides
$>$ Parafovea cones low-order multimode waveguides

Cutoff V=3.8317

Outer segment modes of rat, monkey, and human (Enoch, JOSA 1963)

Cylindrical waveguide photoreceptor model

Cylindrical waveguide
Coupled light
$\square \psi=\sum_{n, m} c_{n, m} \mathrm{LP}_{n, m}$
$\mathrm{LP}_{\mathrm{lm}}(\varphi, r)$ modes of a step-index fiber

Light coupling to a Gaussian mode

Shifting of a narrow incident beam

SCE-I function at the pupil

$$
\eta(r)=\eta_{\max } 10^{-\rho_{s C E}\left(r-r_{\max }\right)^{2}}
$$

Directionality factor

Single waveguide derivation of $\rho_{S C E}$

Coupling strength:

$$
T=\left|\iint \psi_{r}, \psi_{m}^{*} d u d v\right|^{2}
$$

Gaussian beam and mode approximation $\left(\right.$ matched $\left.w_{m}=w_{r}=w\right)$

$$
T(\theta)=\exp \left[-\left(\frac{\pi n_{\text {eye }} w}{\lambda}\right)^{2} \theta^{2}\right]
$$

$$
\rho_{S C E}=\log (e)\left(\frac{\pi n_{\text {eye }} w}{\lambda f_{\text {eye }}}\right)^{2}
$$

Normal vision (Newtonian light)

Integrated SCE (normal vision)

What are the StilesCrawford effects?

Psychophysical:

SCE-I SCE-II INTEGRATED SCE-I

Objective:

OSCE

B. Vohnsen, Chapter 18 in Handbook of Visual Optics (Ed. P. Artal, 2017)

Geometrical-optics interpretation

\square Leakage of rays above a critical angle (O'Brien, JOSA 1951)
\square Disarray of neighbouring photoreceptors (Safir \& Hyams, JOSA 1969)
$>$ "Sharp" cut-off above a certain angle of incidence $>$ This is transmitted light, not absorbed (vision) light -How can it describe cylindrical foveal cones? ... or rods?

What is the SCE-I?

Wave-optics interpretation

$>$ What happens to the nonguided radiative modes?
$>$ This is transmitted light, not absorbed (vision) light
$>$ How can it describe densely-packed waveguides?

Where is vision triggered?

Geometrical-optics solution

We need to consider light absorption

Outer segment

Visibility (absorption) is proportional to distance ($1^{\text {st }}$ order)

$$
\eta=1-\exp (-\alpha z) \cong \alpha z
$$

In 3-D this is a "volumetric" absorption model

Visibility: light-pigment overlap

Side view

Volumetric overlap gives an estimate for the absorption and visibility

Example for the SCE-II

M -cones surrounded by L, M and some S

Integrated SCE-I measurements

(a)

Back-illuminated paper

Automated
spectral-tuneable
bandpass filter
(c)

Motorized iris

(d) Pupil power (norm) vs time @550nm

$$
7.4 \text { mm }
$$

Vohnsen et al. J. Vision 2017

Integrated SCE-I: pupil size flickering

Experimental verification of the volumetric absorption model

Vohnsen et al. J. Vision 2017

Effective pupil

No SCE-I

5 mm

6 mm

$\rho=0.05 / \mathrm{mm}^{2}$ (Maxwellian light)

4.74 mm

5.13 mm

5.41 mm $\rho=0.40 / \mathrm{mm}^{2}$ (Normal vision)

1.62 mm 1.95 mm 2.06 mm 2.08 mm
2.08 mm
2.08 mm

2.08 mm

Integrated SCE-I and reduced MTF quality

Sorolla: walk on the beach (1901)

Examples for the SCE-I

Visibility

Volumetric model, 3 cones

A. Carmichael Martins and B. Vohnsen, Biomed. Opt. Express (submitted, 2019)

Why do rods lack directionality?

Volumetric model, 37 rods
Rods are surrounded by ... rods

Vohnsen et al. J. Vision 2017

Antenna model

Beacieerdimesoripqndirect)
Becrealdichosorbiedirect)

Optical reciprocity

Vohnsen, Biomed. Opt. Express 2014

Outer segment membrane stacking and visual pigments

Modelo de tortillas

Dipolar antenna model of outer-segment pigments

Model data:

Pigments can be considered as dipole antennas ($\varnothing 5 \mathrm{~nm}$)
Each disc has from 4,000 ($\varnothing 1 \mu \mathrm{~m})$ to 4,000,000 ($\varnothing 5 \mu \mathrm{~m})^{*}$
Each outer segment has approximately 1000 lamellae*
Lamellae interspacing is approximately $20 \mathrm{~nm} *$

Membrane wall thickness (5 nm) is ignored
Dipoles are assumed to be uncoupled

*J. J. Wolken, "Light detectors, photoreceptors, and imaging systems in nature" (Oxford, 1995)

Diffraction equivalence (1 disc)

B. Vohnsen, The retina and the Stiles-Crawford effects, in Handbook of Visual Optics 2017, Ch. 18

Multilayer antenna model and optical reciprocity

Vohnsen, Biomed. Opt. Express 2014

Oblique incidence on one outer segment

Total scattered field vs. incidence angle:

$$
15 \mathrm{deg} .
$$

$20 \mu \mathrm{~m}$

For oblique incidence, scattered light shifts to one side of the segment. With a conical outer segment (not shown) the axial light becomes more confined

A "new" Stiles-Crawford fitting function

Airy-disc pupil function for relative visibility/intensity:

Gaussian vs. Airy SCE-I function

Subject BV 550nm (experiment)
12 measurement-series averaged

Gaussian SCE function?

$$
\eta(r)=10^{-\rho\left(r-r_{0}\right)^{2}}
$$

or Airy disc function?

$$
\eta(r)=\left[2 \frac{J_{1}\left(\alpha\left(r-r_{0}\right)\right)}{\alpha\left(r-r_{0}\right)}\right]^{2}
$$

B. Vohnsen, The retina and the Stiles-Crawford effects, in Handbook of Visual Optics 2017, Ch. 18

Increased myopia prevalence

Excessive eye growth affecting 50\% of the world population by 2050

Increased risk of retinal detachment and glaucoma
"The myopia boom" Nature (2015)

SCE-I analysed in myopes, uniaxial system

MYFUN

Uniaxial brightness flicker

Reduced directionality = large axial length

Slope: $-0.002 \pm 0.001 \mathrm{~mm}^{-2}$ per $m m$ axial length

$$
\rho_{M} \simeq\left(1+2 D f_{E}\right) \rho
$$

$$
R^{2}=0.1796
$$

Accommodation and emmetropization

Altered eye growth in animal models

Eye growth can be locally stimulated by local degradation of the retinal image, even after the optic nerve was cut

Thus, the retina has at least the complete machinery to convert image features into growth signals.
*Frank Schaeffel et al, Ophthalmic Physiol Opt 2013, 33, 362-367

3-D retina breaks defocus symmetry

+0.20D

(a) Incident light focused at outer-segment entrance (OD):

(b) Incident light focused at $\begin{aligned} & \text { outer-segment exit (-0.05D): }\end{aligned}$

Vohnsen, Biomed. Opt. Express 2014

Temporal response of accommodation

(a)

Test subject (29 years)
(a) With and (b) without adjustment of the brightness to compensate changed pupil area

The reaction time was found in the range of $\mathbf{3 0 0} \mathbf{- 7 0 0} \mathbf{~ m s}$ and the response time $\mathbf{2 0 0} \mathbf{- 8 0 0} \mathbf{~ m s}$

We cannot exclude a neural-triggered response to defocus triggering accommodation

Towards retinal implants... fighting blindness

Retinitis Pigmentosa (RP) disease

State-of-the-art implant

Retinal implant alpha

A retinal simulator in $50 \mu \mathrm{~m}$ photoresist AZ40XT

Valente \& Vohnsen, Opt. Lett. 2017

Retinal simulator model, angular tuning

Photoresist waveguide array, role of waveguide length

Vision with an implant

Argus II, retinal imnlant ($6 \cap$ nixels)

Directionality when imaging photoreceptors

Wave-optics interpretation:

DScattering and diffraction from photoreceptors (Vohnsen, BOE 2014)
\square All about refractive index contrast
\square Feature size determines backscattering angle

Problems?

>Impact of densely packed receptors?
$>$ Waveguide and interface variations (beyond 8° no TIR)?

- What can be seen, and what cannot be seen?

High resolution retinal imaging

In-vivo cone and rod reflection image by courtesy of Alf Dubra (BOE 2011)

Experiment

680 nm

Calculated cone mosaic light intensity (no rods included) ARVO (Vohnsen, 2014)

Scattering simulation

680 nm

Although images are not on the same scale, notice how the dark rings (that form part of the cones) are seen both experimentally and numerically.

Confocal Scanning Laser Ophthalmoscope

Closed-loop wavefront correction (with a deformable mirror) prior to imaging

Deformable Mirror (DM)

- 140 actuator
- 3.5 micron stroke
- Include $4^{\text {th }}-$ order Zernike
- $\varnothing 2.5 \mathrm{~mm}$ (5mm @eye)

Galvo Scanners

- 12 kHz resonant
- 47 fps
- 512×512 pixels

Detection (APD)

- 75 micron pinhole
- Video signal
- Avalanche photodiode

Rativa and Vohnsen, Biomed. Opt. Express 2011

SLO-OSCE analysis with pupil sweep of imaging beam

Fovea vicinity
Subject BV

$<\rho_{\mathrm{avr}}>$
0.10-0.15
0.15-0.20
open boxes

Rativa \& Vohnsen BOE 2011

Pupil structuring and directional scattering

Splitting the pupil in sectors for simultaneous retinal imaging at different angles

Biomedical Optics Express Nov. 2018 Differential detection of retinal directionality

Salihah Qaysi, ${ }^{1, *}$ Denise Valente, ${ }^{2}$ and Brian Vohnsen ${ }^{1}$

Cone pointing analysis with an AO fundus camera (model)

Random tio/tilts of un to $\pm 3^{\circ}$

Reconstructed tilts

Pupil-sectored retinal images

Images
Difference images

Local inclination vector at each pixel (m, n)

Inclination vector at pixel (m,n)

$$
\Delta x_{m, n}=\frac{I_{2, m, n}-I_{1, m, n}}{I_{2, m, n}+I_{1, m, n}} L \quad ; \quad \Delta y_{m, n}=\frac{I_{3, m, n}-I_{4, m, n}}{I_{3, m, n}+I_{4, m, n}} L
$$

Image inclination metric ($\mathrm{N} \times \mathrm{N}$ pixels)

$$
\sigma=\frac{1}{\sqrt{2} N^{2}} \sum_{n=1}^{N} \sum_{m=1}^{N} \sqrt{\left(\Delta x_{m, n} / L\right)^{2}+\left(\Delta y_{m, n} / L\right)^{2}}
$$

Cones with local inclination vectors

Colour-coded parafoveal cone mosaic

Vector inclination plot

$$
\sigma=0.091
$$

Colour coding and inclination near the optic disc

$$
\sigma=0.090
$$

Conclusions

- A volumetric absorption model gives good estimates for the SCE-I and for the integrated Stiles-Crawford effect
- Electromagnetic absorption model gives fair estimates for the SCE-I, and may explain rod directionality due to dense absorption in rhodopsin
- Scattering calculations can produce simulated images that may help interpret experimental results
- Directional retinal scattering can be analysed with differential analysis as demonstrated with an AO-fundus camera

Acknowledgments

Dr. Martin Isaias Rodriguez
Alessandra Carmichael Martins
Denise Valente
Salihah Qaysi
Najnin Sharmin
Prince Sunil Thomas

CONACYT

European
Commission
MYFUN: \because)
King Abdullah Scholarships
Program

PSF and MTF (mis-)concepts

Depth-of-focus $\quad D O F=8 \lambda f^{2} / d^{2}$
...at best these are $1^{\text {st }}$-order approximations

