Direccionalidad de los fotorreceptores, su función en visión y en diagnósticos

Understanding photoreceptor directionality in vision and diagnostics

Brian Vohnsen

Advanced Optical Imaging Group University College Dublin, Irlanda

Structure and optics of the human eye

Corneal and ocular aberrations

Null-screen corneal aberrometry

With M. Rodríguez-Rodríguez

ARVO 2019 + poster MyT2019-123

Manuscript in preparation

Hartmann-Shack ocular wavefront sensing without crosstalk

With A. Carmichael Martins

- B. Vohnsen et al., Appl. Opt. 2018
 - A. Carmichael and B. Vohnsen, Micromachines 2019

Cones and rods of the human retina

En-face view of parafovea cones and rods

Biological fibres

Cone photoreceptor diameter ranging from about 2 μ m (fovea) to 8 μ m (parafovea)

Images by courtesy of P. Munro, UCL

Side view of parafovea cones and rods

Eye and retina

The retina is a tri-dimensional screen

Cones, rods, and ganglion cells

6

Phototropism in plants

Sunflowers

Photoreceptors are likewise adaptable

Smallman et al., Nature 412 (2001) 604

Outline

- The Stiles-Crawford effect(s)
- Photoreceptor waveguides
- Geometrical optics model
- Electromagnetic models
- Myopia, emmetropization, and accommodation
- Directionality in diagnostic imaging
- Conclusions and outlook

Directionality with Maxwellian light

The Stiles-Crawford effect (SCE-I)

Proc. Roy. Soc. 1933

Walter S. Stiles

Brian H. Crawford

Maxwellian light

Real-eye cone-photoreceptor waveguides

12

Cylindrical waveguide photoreceptor model

Light coupling to a Gaussian mode

Vohnsen *et al*, JOSA A **22** (2005) 2318

SCE-I function at the pupil

$$\eta(r) = \eta_{\max} 10^{-\rho_{SCE}(r-r_{\max})^2}$$

Single waveguide derivation of ρ_{SCE}

Coupling strength: $T = \left| \iint \psi_r \psi_m^* du dv \right|^2$

Gaussian beam and mode approximation (matched $w_m = w_r = w$)

SCE-I directionality factor

$$T(\theta) = \exp\left[-\left(\frac{\pi n_{eye}w}{\lambda}\right)^2 \theta^2\right]$$
$$\rho_{SCE} = \log(e) \left(\frac{\pi n_{eye}w}{\lambda f_{eye}}\right)^2$$

Normal vision (Newtonian light)

Integrated SCE (normal vision) d Integrated SCE for a pupil $\rho_{SCE}r^2$ rdr η_{eff} 0 10 r (mm) True or $\rho = 0.05 / \text{mm}^2$ false? Effec 5 10

Pupil diameter, d (mm)

What are the Stiles-Crawford effects?

Psychophysical:SCE-ISCE-IIINTEGRATED SCE-I

Objective: OSCE

B. Vohnsen, Chapter 18 in Handbook of Visual Optics (Ed. P. Artal, 2017)

What *is* the SCE-I?

Geometrical-optics interpretation Inner segment leakage Outer segment TIR... ...TIR Transmission

Leakage of rays above a critical angle (O'Brien, JOSA 1951)
 Disarray of neighbouring photoreceptors (Safir & Hyams, JOSA 1969)

Problems?
▶ "Sharp" cut-off above a certain angle of incidence
▶ This is transmitted light, not absorbed (vision) light
▶ How can it describe cylindrical foveal cones? ... or rods?

What *is* the SCE-I?

Where is vision triggered?

Geometrical-optics solution

We need to consider light absorption

Beer-Lambert's law

$$I(z) = I_0 \exp(-\alpha z)$$

Visibility (absorption) is proportional to distance (1st order)

$$\eta = 1 - \exp(-\alpha z) \cong \alpha z$$

In 3-D this is a "volumetric" absorption model

Vohnsen et al. J. Vision 2017

Visibility: light-pigment overlap

$\eta = \frac{\text{intersection volume}}{\text{light volume}} \le 1$

Volumetric overlap gives an estimate for the absorption and visibility

Example for the SCE-II

Integrated SCE-I measurements²⁵

Vohnsen et al. J. Vision 2017

Integrated SCE-I: pupil size flickering

Vohnsen et al. J. Vision 2017

Integrated SCE-I and reduced MTF quality

Vision @ 2 mm pupil

Vision with retinal blur @ 8 mm pupil

Sorolla: walk on the beach (1901)

Examples for the SCE-I

Vohnsen et al. J. Vision 2017

A. Carmichael Martins and B. Vohnsen, Biomed. Opt. Express (submitted, 2019)

Why do rods lack directionality?

Volumetric model, 37 rods

Vohnsen et al. J. Vision 2017

Antenna model

Bearie (diabotopen) direct) Received distantiandirect) hv Visual pigments **Optical** reciprocity

Vohnsen, Biomed. Opt. Express 2014

Outer segment membrane stacking and visual pigments

Modelo de tortillas

Dipolar antenna model of outer-segment pigments

Model data:

Pigments can be considered as dipole antennas (Ø5 nm)

Each disc has from 4,000 (\emptyset 1 µm) to 4,000,000 (\emptyset 5 µm)^{*}

Each outer segment has approximately 1000 lamellae*

Lamellae interspacing is approximately 20 nm*

Membrane wall thickness (5 nm) is ignored

Dipoles are assumed to be uncoupled

^{*}J. J. Wolken, "Light detectors, photoreceptors, and imaging systems in nature" (Oxford, 1995)

35

Diffraction equivalence (1 disc)

B. Vohnsen, The retina and the Stiles-Crawford effects, in Handbook of Visual Optics 2017, Ch. 18

Electromagnetic scattering model

Multilayer antenna model and optical reciprocity

 ρ in the range of 0.05 (dim light) – 0.10 /mm² (bleached)

Outer segment membranes or equivalently stacked apertures

Oblique incidence on one outer segment

For oblique incidence, scattered light shifts to one side of the segment. With a conical outer segment (not shown) the axial light becomes more confined

A "new" Stiles-Crawford fitting function

Airy-disc pupil function for relative visibility/intensity:

Gaussian vs. Airy SCE-I function

Subject BV 550nm (<u>experiment</u>) 12 measurement-series averaged

B. Vohnsen, The retina and the Stiles-Crawford effects, in Handbook of Visual Optics 2017, Ch. 18

Increased myopia prevalence

Excessive eye growth affecting 50% of the world population by 2050

Increased risk of retinal detachment and glaucoma

"The myopia boom" Nature (2015)

SCE-I analysed in myopes, uniaxial system

42

Uniaxial brightness flicker

Reduced directionality = large axial length

Accommodation and emmetropization

Altered eye growth in animal models

Eye growth can be locally stimulated by local degradation of the retinal image, even after the optic nerve was cut

Thus, the retina has at least the complete machinery to convert image features into growth signals.

*Frank Schaeffel et al, Ophthalmic Physiol Opt 2013, 33, 362-367

3-D retina breaks defocus symmetry

(b)

(a) Incident light focused at outer-segment entrance (OD):

47

Vohnsen, Biomed. Opt. Express 2014

Temporal response of accommodation

Test subject (29 years)

(a) With and (b) without adjustment of the brightness to compensate changed pupil area

The reaction time was found in the range of 300 – 700 ms and the response time 200 – 800 ms

We cannot exclude a neural-triggered response to defocus triggering accommodation

Towards retinal implants... fighting blindness

Retinitis Pigmentosa (RP) disease

Retinal implant alpha

A retinal simulator in 50μ m photoresist AZ40XT

Valente & Vohnsen, Opt. Lett. 2017

Retinal simulator model, angular tuning

Valente & Vohnsen, Opt. Lett. 2017

51

Photoresist waveguide array, role of waveguide length

Vision with an implant

Directionality when imaging photoreceptors

□ Scattering and diffraction from photoreceptors (Vohnsen, BOE 2014)

All about refractive index contrast

□ Feature size determines backscattering angle

Problems?

Impact of densely packed receptors?

> Waveguide and interface variations (beyond 8° no TIR)?

What *can* be seen, and what *cannot* be seen?

High resolution retinal imaging

In-vivo cone and rod reflection image by courtesy of Alf Dubra (BOE 2011)

Calculated cone mosaic light intensity (no rods included) ARVO (Vohnsen, 2014)

Although images are not on the same scale, notice how the dark rings (that form part of the cones) are seen both experimentally and numerically.

Confocal Scanning Laser Ophthalmoscope

Closed-loop wavefront correction (with a deformable mirror) prior to imaging

Deformable Mirror (DM)

- 140 actuator
- 3.5 micron stroke
- Include 4th-order Zernike
- Ø2.5mm (5mm @eye)

Galvo Scanners

- 12kHz resonant
- 47 fps
- 512 \times 512 pixels

Detection (APD)

- 75 micron pinhole
- Video signal
- Avalanche photodiode

Rativa and Vohnsen, Biomed. Opt. Express 2011

SLO-OSCE analysis with pupil sweep of imaging beam⁵⁷

Rativa & Vohnsen BOE 2011

Pupil structuring and directional scattering

Splitting the pupil in sectors for simultaneous retinal imaging at different angles

Biomedical Optics Express Nov. 2018 Differential detection of retinal directionality

SALIHAH QAYSI,^{1,*} DENISE VALENTE,² AND BRIAN VOHNSEN¹

Cone pointing analysis with an AO fundus camera (model)

Pupil-sectored retinal images

Images

Difference images

Local inclination vector at each pixel (m,n)

Inclination vector at pixel (m,n)

Image inclination metric (N x N pixels)

$$\sigma = \frac{1}{\sqrt{2N^2}} \sum_{n=1}^{N} \sum_{m=1}^{N} \sqrt{\left(\Delta x_{m,n} / L\right)^2 + \left(\Delta y_{m,n} / L\right)^2}$$

Cones with local inclination vectors

Colour-coded parafoveal cone mosaic

Vector inclination plot

σ = 0.091

Colour coding and inclination near the optic disc

σ = 0.090

Conclusions

- A volumetric absorption model gives good estimates for the SCE-I and for the integrated Stiles-Crawford effect
- Electromagnetic absorption model gives fair estimates for the SCE-I, and may explain rod directionality due to dense absorption in rhodopsin
- Scattering calculations can produce simulated images that may help interpret experimental results
- Directional retinal scattering can be analysed with differential analysis as demonstrated with an AO-fundus camera

Acknowledgments

brian.vohnsen@ucd.ie

PSF and MTF (mis-)concepts

Depth-of-focus $DOF = 8\lambda f^2 / d^2$

... at best these are 1st-order approximations