iz

O

e

JOURNAL OF MODERN OPTICS, 1993, voL. 40, No. 8, 1605-1630

Cooperativity and entanglement of atom-field states
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Abstract. The Jaynes—Cummings model of a single two-level atom interact-
ing with a quantized single-mode coherent field generates at the half-revival
time a dynamically disentangled atom-field state. At such times, the field is in
asymptotically pure Schrodinger cat state, a macroscopic superposition of
distinct field eigenmodes. In this paper we address the problem of field purity
when a second atom is allowed to interact with the cavity mode and becomes
entangled with the first atom via their mutual cavity field with which they
interact. We employ the collective Dicke states to describe the cooperative
effects on the entanglement and show that the second atom spoils the purity of
the field state except for special cases of the atom-field coupling or of initial
conditions.

1. Introduction

The interaction of an atom with a quantized electromagnetic field mode leads
to an entanglement of these two systems such that the total state vector cannot be
written precisely as the product of a time-dependent atomic and field component
vector [1]. If the field alone is of interest, the reduced density matrix obtained by
tracing over atomic states therefore cannot in general be written as a pure state
projector. Yet when the dynamics of the fully quantized Jaynes-Cummings model
(JCM) of a two-level atom driven by a single field mode prepared initially in a
coherent state [2] is studied in detail, a remarkable disentanglement [3] is found at
the half-revival time Tg/2; the asymptotically-pure field state at this time is
approximately a Schrodinger cat superposition [4] of macroscopic states. A
number of questions are raised by this result: is this outcome peculiar to a single
two-level atom? Would additional dynamically coupled levels, or the presence in
the field of more than one atom destroy this disentanglement? Knight and Shore
[5] have studied the dynamics of a single multilevel atom interacting with a
quantized field mode and show how the disentanglement is highly sensitive to the
existence of competing transitions. In this paper we investigate the effect of a field
interacting with more than one atom at a time.

tOn leave from: Chemical Department, Moscow State University, Moscow, 119899,
Russia.

}Present address: Laboratoire de Spectroscopie Hertzienne de L’ENS, Universite
Pierre et Marie Curie, CNRS URAO0018, Boite 74, 75252 Paris Cedex 05, France.

§On leave from: Instituto Nacional de Astrofisica Optica y Electrénica, Apartado Postal
51 y 216, Puebla, Puebla, Mexico.

¥ The refereeing for this paper has been organized by a member of the Editorial Board.

0950-0340/93 $10-00 © 1993 Taylor & Francis Ltd.




1606 I. K. Kudryavtsev et al.

It is a general consequence of entanglement [6] that if a systemn A with N states
becomes entangled with a second system B with M states (M > N), then at most
only N states of B (so-called Schmidt states [7] which in general can be orthogonal
superpositions over the entire Hilbert space of B, of course) are involved in the
dynamics. Thus for a single two-level atom, two such field ‘eigenstates’ are
involved [3]; in the JCM these two manifest themselves in phase space (for
example revealed by an appropriate quasiprobability) as a bifurcation into two
‘blobs’ which separate (in the collapse), recollide (in the revival) in a fashion first
revealed by Eiselt and Risken [8]. The essentially pure disentangled state at the
half-revival time is a superposition of these two ‘blobs’ in phase space [3,4]. A
three-level atomic system leads to three field ‘eigenstates’ and three ‘blobs’ in
phase space [5]; unfortunately as noted by Knight and Shore, they disentangle into
a pure state only under very special circumstances when the system can be
manipulated into an effective two-level system. In other words, the Schrodinger
cat state of the field is essentially poisoned if other levels can participate in the
dynamics, and the field reverts to a statistical mixture. One would expect to see
similar complications if more than one atom interacts with the field mode, as
additional transitions compete for the field excitation.

The traditional JCM describes the interaction of a single two-level atom with a
single quantized field mode and leads to a plethora of interesting effects [2] such as
the collapse and revival of Rabi oscillations and the vacuum Rabi splitting of
spectral lines. The generalization of this model to include several atoms has been
studied by a number of authors [9, 10], with particular attention being paid to the
collective response of several atoms which see the same value of the cavity field. In
this case the collective Dicke model of cooperative radiation processes [11]
predicts that the Rabi frequency is enhanced by \/ N where N is the number of
atoms in the cavity. Haroche and coworkers [12] and others [13] have exploited
this \/N dependence to enhance Rabi transients and vacuum Rabi splittings in
millimetre-wave Rydberg atom, and high-Q optical cavity experiments. If, how-
ever, the spatial variation of the cavity field is important, the collective Dicke
model needs to be modified to take into account the fact that each atom in the
cavity sees a different value of the radiation field.

In this paper we investigate the evolution of a pair of two-level atoms of
variable spatial separation interacting with a single mode quantized field. For
small separation compared with the wavelength of the cavity radiation, the
evaluation is of course that of the collective three-level Dicke model. From the
above discussion we would expect three field ‘eigenstates’ to be involved in the
entanglement and three ‘blobs’ in phase space to emerge, radically different from
the two ‘blobs’ which evolve at Tg/2 into a disentangled cat state. However, for
modest separations we would expect all four Dicke states of the two-atom system,
including the antisymmetric state to participate in the dynamics. Under these
conditions there are competing pathways [14] involving symmetric and antisym-
metric intermediate states to complicate the evolution. The appropriate choice of
basis, between Dicke states or simple two-atom products becomes less obvious.
Finally, if one of the atoms finds itself situated at a field zero, then of course it
cannot participate in the dynamics at all, and the problem reverts to a simple two-
level JCM.

One of the surprises that we have found is that for certain initial conditions we
find we observe just two ‘blobs’ in phase space even for an arbitrary distance
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between the atoms (i.e. even for a four-level system). An analysis of the field
density matrix for these cases reveals that under such circumstances we can
generate an asymptotically pure state characteristic of a cat once more.

2. Atom-field coupling

Let us consider two two-level atoms interacting with a single mode quantized
field. The position of the first atom in the cavity is fixed and the second atom is at
some distance R from it. This distance will be a variable parameter of the problem.

We have the following Hamiltonian in the dipole and rotating wave approximation
(RWA):

H=H,+H,,, (D

where the unperturbed atomic and field (H,) and interaction (H,,,) terms are given
by

Hy=wy(64) +6P) + wa'a,

B,= Y 90 (6Qa+a's?),

i=1,2

(we use units such that #=1). Here 4 are atomic operators for the ith atom with
the usual commutation relations

[&(-?) a-(i)] = 2&(30605

4(a") are field operators corresponding to annihilation (creation) of photons in the
cavity mode and obey Bose commutation relations

[4,4"=1,

A9(r) is the coupling constant for the ith atom. In the following we will consider
the case wy,=w, when atoms and field are exactly resonant. We ignore in this paper
the effects of the dipole-dipole interaction on radiative frequency shifts.

The coupling of the first atom is taken to be constant:

ANR)=A.

Although we take the atom 1 to be situated at a peak of the cavity field mode, we
allow the second atom to be at a distance R away and experience a variable atom
field coupling

A®(ry=21 coskR.

The different possible situations are illustrated by figure 1, and are discussed in
detail later. Let us note here only that the case kR=m/2, i.e. A?(r)=0, corresponds
to a conventional two-level JCM, because here the second atom cannot see the
field coupling, and the case kR=0 corresponds to a three-level two-atom Dicke
system. The latter case was treated in [9] with the use of the basis of four states
181,820 ®In), le1, 820 ®ln—1), |g1,6,®|n—1), ley, e,> ®|n—2), where g; and ¢
correspond to the ground and excited states of the ith atom. But for the case of the
Dicke system the triplet and singlet states have independent dynamics. For
example, when both atoms are initially excited, only the triplet state evolves. So
the essentially three-level Dicke basis is more appropriate for this case and we will
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Figure 1. Schematic illustration of the variation of atom-field coupling with position in
the cavity mode: atom 1 is fixed at a peak of the cavity field, whereas atom 2 can
experience a varying coupling at a distance R away.

use it below. As was stated above, this choice is not so obvious for an arbitrary
distance between the atoms when the singlet state is also involved in the dynamics
and certainly for the distance such that kR=mn/2, the ‘undressed’ basis of [9] is
more suitable. We employ the following notations for atom-field states:

@) =181,82) ®|n+2), 3a)
1
|‘P2>=:/‘2‘(|91»g2>+|31:92>)®|”+1)» (3b)
1
|(p3)=7§(|e,,g2>—-|g1,e2>)®|n+1>, &X)
and
lps) =les, 6> ®|n). 3a)

-We will work in the Schrédinger picture and write the state of the system in the
form

4
1Z@)) =}, b(®)lo. C)
i=1
The Schrodinger equation is written as
. dby(8) u
i~ =0t 1)+ Y b0 ox Hialop, ®)
j=1
or, in the matrix form:
dB(r)_ :
4 —iMB(2), (6)

where the column vector B(¢) may be written in terms of the probability ampli-
tudes b(t)

L ®
B(t)= | ? ) (7
bs(t)

by(t)
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and the 4 x4 matrix M contains atom-field energies and spatially-dependent
couplings in the form

r 2\ 1/2 2\1/2
| won+1) (": > A(1 +cos kR) (1'321—) A(1—cos kR)
2\1/2
(—1—‘—;—> A(1+coskR) Wo(n+1) 0
M= 2\ 1/2
<%> A(1—coskR) 0 wo(n+1)
' 1/2 1/2
0 (%) A(1+4+coskR) — (%) A(1 —cos kR)
0
1\1/2
(%—) A(14+coskR)
1\1/2
- (%) A(1+coskR)
wo(n+1) )

3. Solutions for the probability amplitudes
The matrix M is real and symmetric and has real eigenvalues which we write in
the form

vi=wo(n+1)+mzwo(n+1)+%ﬁ, i=1,2,3.4, (8
where l
Y1.2=[PL(P* =D}, ﬁ_(Q’a)

¥3.4=—[PL(P*=DH''7,

P= (2n + 3)(1 +cos kR), D 2[(n+ 1)(n +,2,)] Y2 sin? kR.

3 )
RN

Associated with the elgenvalues vi we have the followmg eigenstates (dressed
states):

4x{n+2)'"? cos kR
—(1+cos kR)[2(n+2)(1 —cos kR)* — 2]

! (1 —cos kR)[2(n+2)(1 +cos kR)*— ¢7]

4Ny (n+2)'"? cos kR

B =

T +1)1/2 [2(n+2)(1 +cos® kR) — x?]
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where N, are normalization constants (i=1, 2, 3,4).
Let us suppose now that initially both atoms are excited (that is ,(0)=5,(0)
=b,(0)=0, b,(0)=1) and write down the general solution in the following form:

4
B(t)=) aPBY exp (—iv;?). (11)
ji=1

We obtain the following expression for the components of the vector B(t):

by (D) =4[(n+1)(n+2)]'2(x1 — x3) " '(cos p t—cos p,t) exp (—iat) cos kR, (12a)

2n+2)(1—cos kR)? — 2
bz(t)=i(n+1)”2(xf—x%)'1[ (42X - Ll YRR
1
2(n+2)(1—cos kR)?— y2
_Ant+2X ;°s . < I yzt:| exp (—iat)(1+cos kR), 125)
2
2n+2)(1 kR)?—y?
bs(t)=—i(n+1)”2(xf—x§)_1|: (2 +;°s Uit $ YRR
1
2n+2)(1 kR)? — 22
_AAnt2X +x°°s e 3P yzt] exp (—iat)(1—cos kR), (12¢)
2
ba(t)= — (3 —x3) " H[2(n+2)(1 +cos kR)> — x3] cos u,t
—[2(n+2)(1 +cos kR)z—xg] cos U, t} exp (—iat), (124d)
as=wy(n+1). (13)

The functions |b(t)| give us the probabilities of occupation of the ith Dicke
state as a function of time, photon occupation number and interatomic distance. It
can be seen clearly from equation (12) that depending on R we have some
particular cases which we now consider in detail.

3.1. (4) kRR=0

Both atoms are at the same point, so we have a three-level two-atom Dicke
system. In this case both atoms see identical fields, hence the dipole transition
couplings for both atoms are equal, and the antisymmetric state decouples from
the dynamics and this is manifested by b5(t)=0. The state |@3) is not occupied at
any moment of time and we have throughout the evolution of a three-level system.
The situation is illustrated in figure 2 (a). In this case equation (12) reduces to

by()=[(n+1)(n+2)]"*(2n+3)" Hcos At[2(2n+ 3)]12—1} exp (—iat), (14 a)

by(t)= —i n+1 A A[2(2n+ 3)]1? i (14 )
H(t)=—1i ni3 sin At[2(2n+3)]"/“ exp (—iat),

by(t)=0, (14¢)
and

by(t) =(2n+3)"H{(n+2) +(n+1) cos ([2(2n+3)1"/%)} exp (—iat). (14 4d)
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Our result for the probability amplitude for the state |@,) agrees with that found
in [9], where only the R—0 Dicke limit was studied.

3.2. (B) kR=n

In this case both atoms couple to the field but with opposite signs (see figure 1).
The antisymmetric state decouples and we have exactly the same equations as in
the previous case with the major difference being that b,(¢) and b53(¢) are inter-
changed. The scheme of transitions is shown in figure 2(b).

3.3. (C) kR=m]/2

With this choice of interatomic distance we find that the amplitude b,(¢) is
equal to zero at all times, which means that the state |@,), where both atoms are in
their ground states, cannot be populated during the evolution. We can see the
reason for this in figure 1. The second atom is located at the point with a zero field
amplitude, so it does not see the field at all and does not participate in the
evolution. The system is effectively described in terms just of two levels. For this
case the basis (2) is not the most suitable and it is better to work with that of
individual atoms used in [9] as we can see from figure 2 (c). In the product basis of
two-level atoms the dynamics is of course that of a two-level atom; in the Dicke
basis we need three levels and destructive interference reconstructs the usual two-
level JCM evolution.

3.4. (D) kRR=T7/4

This case is chosen as an intermediate one. Now all the four states are involved
in the evolution (figure 2 (d)). The new feature of this level scheme is the existence
of two pathways by which the fully excited two-atom system can evolve to the
state in which both atoms are unexcited. As we shall see, these pathways interfere
and this interference modifies the evolution.

4 4
I NI
1 ) 4
© @

Figure 2. Level scheme for two atoms for different values of kR. (a) kR=0, we have four
Dicke states 1-4, the antisymmetric state 3 decouples and only 4,2 and 1 participate in
the dynamics; (b) kR=r, it is the symmetric Dicke state which is now decoupled from
the dynamics; (c) kR=m/2; atom 2 now sits at the zero of the cavity field and cannot
participate in the collective dynamics, leading to a lambda configuration of Dicke
states; (d) level configuration appropriate to an arbitrary interatomic distance; all four
Dicke states participate in the dynamics, leading to an interesting competition
between the 4-2-1 and 4-3-1 transition pathways.
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4. Evolution of atomic and field observables

Let us now investigate some atomic and field properties using equations (12).
In order to do so we write down the expression for the atom-field system density
matrix with the field initially prepared in the number state [#)>. We have

4 4
pPO=[YD> Y=Y ¥ b(ObXDI9> 9. (15)

i=1j=1
To obtain the reduced atomic density matrix we have to trace out the field
variables

Pa(®)="Trg p(2).

The density matrices for each atom can be written as

P1(1)=Try pA(?)

1
=[|b1(t>|2+§|b2(t)—b3(t>|2]|gl><gl|
1
+[§Ibz(t)+b3(t)lz+Ib4(t)|2]le1><ell, (16)

p2(t)="Tr, pa(®)

1
= [Ibl(t)lz +§ |b2(t)+b3(t)|2]|g2> gl

1
+[§Ibz(t)—b3(t)|2+Ib4(t)lz]|ez><ez| (16 b)

We obtain the following reduced field density matrix for this initial Fock field
state:

pe(®) =1b1(D)1%[n+2> (n+ 2|+ [15,(2) | +1b5(1)| 2] |m+ 1) <+ 1] +|bo(1)|*[n)<n| (17)

If we start with an arbitrary initial state of the field |« (providing it is a pure state)
lkxy=3, Cyx)|n), (18)
n=0

where C,(k) is the amplitude for the state |x) to be occupied initially by # photons,
then the wavefunction can be written as

4 o0
lY())= ‘21 ZO Co(K)b;, o) | @(n)). (19)
Here we have added the index #n to the notations for 4,(¢) and |¢), as a reminder
that these amplitudes describe atom and field states with a particular cavity-field
excitation number.
The dependence of the density matrix on the field photon number distribution
is given by

2] o 4 4
pPO=1Y Y Y Y Cl)CI)b, (Db} ()| 9in)) {@m)]. (20)

n=0m=0i=1j=1
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We consider the case when the field is initially in the coherent state |a), i.e. where
the occupation amplitude is given by the Poisson amplitude

o
C,.(K)EC..(a)=7;;,eXP(—|a|2/2), (21)
and |a|2=# is the mean number of photons initially in the cavity field.
We will plot the population inversions for each atom

1
Wi(t)=§Tr {[le el — g <&illpd2), i=1,2,

1 [}
W)= 3 Zo [154,n(8)|2 —151,u(t)|* + b2 #(1)B% 4(1) + % ()] K(D)]| Cal(@) |,
and

W,y(t)=

i [|b4,n(t) | 2o |bl,n(t) l 2 b2,n(t)bg‘,n(t) - bg,n(t)b&n(t)] l Cn(a)l 2)
0

1

2
.. . 1

and also the total population inversion W(t)=§ (W0 + Wy()]):

1 2
W=7 Zo (164,402 =151 4(2) |21 Co@) | >

The population inversions clearly exhibit the characteristic JCM collapses and
revivals and provide us with information about the discrete nature of the quan-
tized atom-cavity field eigenvalues. To obtain a clearer view of the Schmidt
eigenmodes of the field we also compute the relevant field quasiprobabilities in
phase space. These clearly display, in a series of bifurcations and collisions, the
role of such eigenmodes, In particular, we will investigate the Q function, defined
by O(fy=(1/m<flp0|f> (jF> is a coherent state) computed for the field
reduced density matrix

peit) =% ¥ |my{m|
r=0m=0
X [y 003 W DC () o) 4+ by 4 2(0BY, s 28} Ca 22 COR s 2l2)
Sl LETPRL €8 115 RO 4 o TORY 3121 APy 43 L S 318 im] {25)

m+ 1

and obtain the quasiprobability in terms of probability amplitudes and photon
occupation amplitudes in the form

1 = £
Qh)=_ L L CHPCLEE, (05T m(C(a)C ()
*n=0m=0
FBa g (0% o () By g 1 (058 s 1 (0]C 4 () C A ()
+'r:'4..-'1 4 l{jjb:.n+][”Cn+1{ﬁ]{'1:|-r I{le]E' {26)

The Q function tells us the number and dynamics of the field eigenmodes. It does
not tell us whether these eigenmodes govern the evolution in a pure state or mixed
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state at particular times. To do this, we employ (following Gea-Banacloche [3]) the
purity factor, defined as &(f)=1—Tr[pZ(¢)]. This parameter characterizes the
purity of the field state. For the pure states it must be equal to zero, and deviations
from zero indicate the extent to which the field is in a statistical mixture.

We will start the discussion of the results in graphical form with the case
kR=m/2, corresponding to the conventional two-level Jaynes-Cummings model
[2]. In figure 3 we observe a sequence of collapses and revivals for the inversions
and in figure 4 for the level occupations. The Q function for this case, see figure
5 (a-¢), bifurcates into two blobs rotating in the complex f§ plane in the clockwise
and counterclockwise directions with the same speed. The collision of the blobs at
the point (—o,0) corresponds to the first revival, the next collision at the point
(2, 0), to the second revival [3, 4]. At the moment corresponding to one half of the
revival time the field can be described as a superposition of two macroscopically

0.50 I
0.25

W o.00

-0.25

-0.50 + T T T T T 1

@ At

0.50 —
l

" i IJ||| M
"L i " ""'ﬂlllllfu|nif1|l|||!||v |

o |
W 0.00 - "'I

-0.25 -

-0.50 T T T T T 1
] 1o 20 a0 40 a0 60

5 At

0.50

0.25 -

W, 0.00 -

-0.25 4

ALY

©

Figure 3. Time evolution of the total atomic inversion defined by equation (24) and
inversions of atoms 1 and 2 defined by (22) and (23) for interatomic distance kR=n/2
starting with both atoms excited and the field in a coherent state with a mean photon
number #=16.
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distinguishable pure states, the so-called cat state [4]. This approach to a cat state
is manifested by the value of the purity factor which is close to zero (figure 6) at
the half-revival time.

Let us discuss now the three-level Dicke case of two identical atoms seeing
precisely the same field (kR=0). We observe the series of collapses and revivals

again (as s example by Deng and 9]), but there are notable
differences case kR=m/2. 7 seen if we compare the
graphs for inversions (figure 7), level occupations (figure 8) and Q function (figure
9). The C allows us to cal interpretation of the

collapse-revival sequence. We now observe a stationary blob (seen by Knight and
Shore [5] for a closely related three-level problem) and two moving blobs. The

1.00

0.75 -1 @

I{(Lso
0.25

0.00 T T T T T
0 10 20 30 40 50 60

At

1.00

®

0.75

}g 0.50
0.25

0.00

10 20 30 40 50 60

At

o

1.00

©
0.75

f;o.so
0.25

n nn

At

1.00
0.75
P, 0.50
0.25
0.00 + T T T T T 1
At

Figure 4. Time evolution of level occupations Pi(t) for kR=n/2, both atoms are initially
excited.
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|
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Figure 5. Contour plot of the field reduced density matrix Q function quasiprobability for
an interatomic distance kR=mx/2 with 7n=16 for different moments of time:
(a) At=6-25; (b) At=12-5; (¢) At=25. Both atoms are initially excited.

first revival for P; corresponds to the collision of the moving blobs in the left
half-plane and the first one for W; to the collision of the moving blobs with the
stationary one in the right half-plane. So we have different sequences of collapses
and revivals for level occupations and inversions. Moreover, we have practically
the same pictures for inversions as in the previous case 2R R=m/2. This means that
the inversions W, are identical for the two atom and one atom cases, so in our case

0.8 —

0.6 -

04 - M
0.2 ‘

i, oA
0.0 - _/ Wl

0 for " Sp. ay dge o se 60
At

Figure 6. Field purity ¢ as a function of At; RR=x/2, n=16. Both atoms are initially
excited.
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Figure 7. As figure 3, but for kR=0 showing a three-level Dicke evolution.

of indirect coupling between the atoms it seems that one atom does not feel the
presence of the other. We note that the graphs are evaluated using a mean photon
number n=16, i.e. to a rather strong field by JCM standards. In that case the
semiclassical approximation is valid, so the above result is in agreement with [15],
where independence of the inversion on the number of atoms in semiclassical
approximation was predicted. The purity factor (figure 10) for the half revival
time is not so close to zero, so the almost pure state of the previous case is spoilt,
and at such distances we do not expect the dvnamical creation of a Schridinger cat
state, essentially due to the existence of the stationary eigenmode,

Far the case AR=m we obtain exactly the same pictures as figure 7-11)
providing we exchange b,(t) for b;(2).

If we consider the four-level system (kR=m/4) the pattern of collapses and
revivals is much more complicated (and again relate to results obtained by Knight
and Shore [5] for a related four-level model). Now we have four blobs for the O
function (figure 11): two fast and two slow, moving in pairs in the clockwise and
counterclockwise directions on a circle with the radius (%)!/2. Collisions between
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the blobs of the same type and of different types are possible. We can see from the
pictures for level occupations (figure 12) and inversions (figure 13) that any
collision of the blobs leads to revival of P, and P,. Collision of the fast blobs
corresponds to a revival of P,, whereas collision of the slow blobs, to the revival of
P,. If fast blobs and slow blobs collide moving in the opposite directions, there is a
revival of W,. If they collide moving in the same direction, there is a revival of
W,. The time dependence of the purity factor (figure 14) is now very complicated,
and the field is far from a pure state throughout the evolution.

Let us remark here that a change of initial conditions leads to changes in the
pictures, e.g. the structure of the Q function can be different. If we take the state
|@,> to be initially occupied, we obtain the following system of equations instead
of equation (4)

)
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©
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P ,0.00
-0.25 -
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0 10 20 30 40 50 60
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R 0.50
0.25

1 U

0-00 3 40 50 60
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Figure 8. As figure 4, but for kR=0.
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Figure 9. Contour plot of the field reduced density matrix Q function quasiprobability for
an interatomic distance kR=0 with 7=16 for different moments of time:
(a) At=6-25; (b) At=12-5; (c) At=25. Both atoms are initially excited. The figure
shows the existence of a stationary blob in phase-space.

0.8
0.6 -
¢ ot - \W‘NWMWWWWWWMW
0.2 1
0.0 —(! .

10 20 30 40 50 60
At




1622 I. K. Kudryavtsey et al.




Cooperativity of atom-field states 1623

Figure 11. As figure 5, but for an interatomic distance kR =m/4.

by(t)=i exp (—iat) [2(n+2)2(1 +cos kR)(2 — x2)] -1
X {x2[2(n+2)(1 + cos kR)> — 2] sin u,t —y,[2(n+2)(1 + cos kR)?
—x31sinp,t}, (27 a)

by(t)=exp (—iat)[8(n+2) cos kR(xi —x3)]!
x {[2(n+2)(1 + cos kR)* — y2][2(n+2)(1 — cos kR)? — x3] cos p,(t)
—[2(n+2)(1 +cos kR)? — x31[2(n+ 2)(1 — cos kR)? — x2] cos p,(8)},

- by(t)=exp (—iat)(1—cos kR)[8(n+2) cos kR(1 +cos kR)(x3 — x3)] *
X [2(n+2)(1+cos kR)? — x21[2(n+ 2)(1 +cos kR)* — 2]
X [cos py (2) —cos py(8)],
and

by(t)=1iexp (—iat)(n+1)""2(1 —cos kR)[8(n+2) cos kR(1 + cos kR)
x (=) 2(n+ 2)(1 +cos kR)* — x31[2(n+2)(1 +cos kR)* — y3]
X (X1 sin gyt —y, sin yé t). (27 4d)

With these initial conditions for the case kR=0 the stationary blob will be absent
even for the case of a three-level system. Moreover, as we can see from figure 15,
even for an arbitrary distance we have two blobs rotating in phase space with a
speed depending on kR. This speed will decrease as R approaches =, for this case
we have one stationary blob (in this case the Q function does not evolve at all
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Figure 12. As figure 4, but for kRR=n/4.

because the initially excited symmetric state decouples from the evolution). It can
be seen from the plots for the purity factor (figure 16) that for these initial
conditions we will have cat states for any distance (i.e. even for a four-level system)
at the half revival time. When kR is close to ®, we have an almost pure state (the
purity parameter is very close to zero). Knight and Shore [5] noted a similar
dependence of the purity on the initial conditions for a three-level atom. They
noted that in general cat states were not produced if the three-level atom started
either in its fully excited or fully de-excited state, but they were if the atom was
initially prepared in its intermediate state provided the transition moments to
upper and lower states were equal. This was attributed to a balancing or interfer-
ence between competing transitions. In our four-level description of the two-atom
states very similar interference can occur provided the initial condition is carefully
chosen. Starting in the symmetric state, we see an identical sequence of coupling
strengths for transitions round to the antisymmetric state via either the fully
excited or fully de-excited intermediate states. These pathways can then interfere
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Figure 13. As figure 3, but for an interatomic distance kR=m/4.
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Figure 14. As figure 6, but for an interatomic distance RR=m/4.
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Figure 16. Field purity ¢ as a function of At for n=16 starting in the symmetric atomic
state as in figure 15 and different kR: (a) kR=0, (b) kR=mn/4, (c¢) RR=m/2, (d) kR=m.
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and it seems that again the interference is responsible for preserving the purity of
the field.

5. Conclusions

When two two-level atoms interact with the cavity field mode, the problem of
entanglement of field-atomic states becomes much more complicated than in the
conventional one atom JCM. When initially both atoms are excited, only for the
case RR=m/2 (when we have effectively a single two-level atom coupled to the
field) are atomic and field states asymptotically disentangled at the half-revival
time. This disentanglement is manifested by a value of a purity factor £(Ty/2)=0
and for this case we have two rotating blobs in phase space. For any other distance
(satisfying the condition 0 <kR<7) we have three (one stationary and two rotat-
ing) or four (all rotating) blobs in phase space and the purity factor is never close
to zero so the Schrodinger cat state at the half revival time is spoilt. However, if we
change the initial conditions we can generate two rotating blobs (as was the case
when the symmetrical state |@,) was initially excited) the cat state will be restored
and for the half revival time the atomic and field states will be asymptotically
disentangled.
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