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5.2 Numerical Inversion Methods

To illustrate the basic methods involved it is sufficient to consider the reduc-
tion of the Fredholm integral equation of the first kind

b
| ke y0rdy=g0  a<x<o 5.1)
to matrix form. Equations of the Volterra type can generally be accom-
modated within the same basic framework (see e.g. §5.4).

It is instructive, first of all, to comment on the effect of specifying
the data function only at discrete points, x; say, where
asx1<...<x;<...< Xxmn<b. Equation (5.1) then becomes

b
| ke mroray=em)  i=12,.m (5.2)
Although no error is involved in this discretisation it is clear that many
functions f(y) can satisfy equation (5.2) without being solutions of equa-
tion (5.1). This reflects the fact that the discretised data points can never
uniquely represent the data function, in that, any polynomial of degree
(m — 1) or greater can pass through the node points of g. Thus a strong
element of information loss has already crept into the functional problem
by its discretisation over the x variable.
It follows that the practical inversion problem can never possess an
unambiguous solution, even in the absence of data noise.

3.2.1 Matrix—quadrature methods

This is probably the simplest of all numerical methods. The integral in
equation (5.2) is approximated directly by a quadrature sum so that

Zlk(xi, Vi) Wi f(¥j) = g(xi) i=1,2,...,m (5.3)
= .

where the w; are weighting coefficients associated with the quadrature rule.
A first-order approximation is obtained in the simplest case of uniform
weighting (w; = Ay = (b — a)/(n — 1)) but more accuracy can, in principle, be
derived by employing the trapezoidal rule or the Simpson quadrature (see

apter or detailed application). ese correspond respectively, to
piecewise constant, linear and quadratic approximations to the integrand in
equation (5.2). Still greater accuracy in representation (5.3) can be derived
by employing more sophisticated quadrature formulae, for example those
derived by Gaussian integration techniques. In all cases, however, an m X n
matrix system is derived, i.e.

2 Aifi= gi i=1,2,...,m - (5.9)
J=1



A
The central problem is then to det\:rmine the differential t;:mission
measure function £(7), describing tt{e distribution of material over

temperature in the source, from the bremsstrahlung spectrum. ¢(¢i). The
‘integral’ equation to be inverted (cf equation (2.32)) takes the discrete form

o@)= | ko T E(T)dT (1.9)
for each ¢ at which ¢ lS measured, with the kernel |
ke, T) = ;ﬁexp(— T) @10
where A is a scaling factor and T is in energy units.

In practice it is often convenient to express equation (7.9) as a standard
Laplace transform (cf equation (2.33))

i

o(ei) = r exp(—&it) G(f) dt. (7.11)
0
7.3.2 Classical inversions peg e

(a) Matrix—quadrature. We begin by exploring the following problem.
Suppose we are given n noise free measurements of the power law spectrum
equation (7.13) in some typical energy range, say 3—10 keV. Can we obtain
a satisfactory n-point approximation to the true solution, equation (7.14)

by invoking the classical quadrature technique? (In what follows we
discretise equation (7.9) using the Simpson quadrature, generally taking
constant logarithmic Yntervgls in the & — 1 variabies (see §7.4.2).)

“First we observe from figure 7.3 that the linear system obtained by
discretising equation (7.9) is generally extremely badly conditioned, even
for relatively low order numerical approximations (n = 5—9 say). Curve B
for example, illustrates the behaviour of the condition number C, for the
energy band 3—10 keV and the temperature span 5-60 x 10° K. Of special
interest is the rapid (exponential) rise in C, as the number of quadrature
points is increased. We see by equation (5.27) 'th_at to guarantee a stable
solution in only a nine point approximation requires relative data errors
approaching 1 part in 108, obviously a quite impossible requirement. Nor
is the matter radically improved by choosing different wavelength and
temperature bands (curves A and C): the rapid rise in C, as the discretis-
ation mesh is ‘filled in’ is a universal trend that is not much affected by the
temperature—photon energy representation.




that the data function namely

(- <]

o(s) = SO exp(—st)N_(r) dt (7.40)

is given by the Laplace transform of the source function. In constructing

numerical solutions we deal only with discretised approximations to equa-
tion (7.40). | :

7.4.2 Numerical inversion method

We employ two methods to reduce equation (7.40) to matrix form

n
0i= 2, KiN; i=1,...,m. (7.41)
j=1
First we invoke the first-order product integration method introduced in
§5.2.3(see §§5.3.3 (Example A) and 5.4.3 for applications). Although only
exact for piecewise constant source functions, this method has the attrac-
tion of not requiring a uniformly incremented ¢ mesh, nor any strategem for

truncating the infinite 7 integration interval. The kernel matrix is given by
1

Kij= - [exp(—sitj-1) — exp(—sit;)] (7.42)
]

where an individual partition (f;— ¢;—;) can be chosen in any convenient
manner. : |

Of course greater accuracy can be derived by employing a conventional
matrix quadrature, for example Simpson’s rule. In this case the fundamen.
tal 7 interval must be partitioned using equal increments with a consequent
loss of flexibility in the representation of the source function. Moreower, in
practice, the large variation over both frequency (») and energy (y) makes
it expedient to introduce logarithmic variables (as in §7.3.1)

x = In(s) y=1In@) (7.43)
so that the kernel in equation (7.40) becomes |
k(x, ) =exp(y — e**?) - (7.44)

where — oo < y < o0, Assuming an appropriate truncation of this interval
(see below) the kernel is discretised by taking a uniform increment A y
whence

Kij= wik (xi, yi) Ay | (7.45)

w;j being the weights associated with Simpson’s rule namely
1,2,4,2,...,2,4,2,1) with n odd. The inversion problem is then
reduced to equation (7.41) on identifying ¢; = expx; and Nj = Nexpy;.
This system is formally far more_accurate than equation (7.42), being exact
for cubic rather than zeroth-order polynomial source functions.

Two strategies will be adopted to stabilise the matrix inversion problem.
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© 6.16. Quadrature methods and expansion methods

Let us investigate briefly how a quadrature method may be set up for an
equation of the first kind. We shall then indicate the potentially
unsatisfactory nature of the method. Modifications of the method, in-
tended to alleviate some of its shortcomings, will be discussed later.

From egn (5.104) we have, on replacing the integral by a rule
with weights wj and abscissae yj (j =0,1,2,...,m) , the approxi-
mation

n

z wﬂ(m,y ) f(y )
J=0. Y

1]

g(x)

If we write

n

jiowjk(x,yj)f(yj)

g(x) (5.107)

and seek values of f(yj) (4 =0,1,2,...,n) satisfying (5.107), we
shall not in general find a solution. A solution exists only if g(z)
is a linear combination of the functions K(m,yi) (§ = 0,1,2,...,1)

and, even if the integral equation has a solution, this is not guaran-—

teed. However, if we select BosBq s eesB, We may be able to satisfy
the equations
2 ij(zt,y D f(y g(zi) (£ = 0,1,2,.0...m) . (5.108)
J=0 _ S
AT e s

We shall suppose that m =#n , until further notice, and these equa-
tions then define f(yo),...,f(yn) provided detﬂk(zi,yj)] #0 (in
particular, if the functions K(x,yj) form a Haar set). There is no
necessity in these equations to choose z. =Y. , though it may be

1 1
thought natural to do so. We shall demonstrate by examples that egns

S TR

st A

(5.108) do mot lead to a generally rellable method of approximating the

values of a solutlon of the 1ntegral equatlon. We shall proceed under

RS I e i

the general assumption that X(z,y) and g(xz) are continuous.

Emc:u&ullf» /src)zaféam.m /Q-f?;?‘o o deels &

{nzva L g b reyon.
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A "Technique for the Numerical Solution. of Certain
Integral Equations of the First Kind*

Davip L. Prmurst

Argonne National Laboraiory, Argonne, Illinois '

Iniroductzon
The general linear equat:on may be written as

W) + [ K )W) dy = o) (65 25b)

where the known functions h(z), K(z, y) and g(z) are assumed to be bounded
and usually to’be continuous. If A(z) = 0 the equation is of first kind; if h(z) =0
fora < « = b, the equation is of second kind; if h(z) vanishes somewhere but
not, 1dentlca.113 , the équation is of third kind. If the range of integration is infinite
or if the kernel K(z, y) is not bounded, the equation is singular. Here we will
consider only nonsingular linear integral equa.tlons of the first kind:

b . ) ' .
f K(m,y)f(y)dy:-g(m)' (egz=b) (1)

 There is exiensive literature on equations of the second kind, but literature

on linear equations of the first kind is sparse. However, several methods for . .

solving equations of the first kind numerically have been proposed [1-10]. No ;..
method has been very successful for arbitrary kernels when the function g(z)
is kmown Wwith only modest accuracy. The reason for this is inherent in the equa-
tion itself. Think of the equation as a linear operator, operating on f(y) to pro-
duce g(z). This operator does not have a bounded inverse. (it may not even
have an inverse, but we will assume here that it does) which can be seen as fol-
. ]ows Let f(y) be the solution to (1) and add to it the function f,, = sin my.

" Yoge any mtegrable kernel 1t is known that g. = f K{(z, y) sin (my) dy -0

as m — . Hence only an mﬁmtesunal cha.nge G m g causes 2 finite cha.nge f,..
in f (i.e. the equation 1s unstabie). Also, one woul DECt TRAL (m— U &s M — ©
““faster for dat 5mo0 an. for sha.rplv peaked Lernelq (mdeed if K(a: y) .
were the é-function, K(:c y) = 8(x — y), then gm = J= would not, approach
zero). Hence we conclude that the success in- e.olvmg equa,tmn (1) by ; a.m method
depends t0 & Ia.rge extent on the accuracy of g(:c ) and. the shape of K (:z:, y)

* Received June, 1961.
+ Based on work performed under the auspices of the U. 8. Atomic Energy Commission.

84
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From equations (I3), the matrix method described here merely replaces A
by A + vB where B is a certain matrix whose elements depend only on A and v \
is an arbitrary non-negative parameter which controls the amount of smoothing.
Increasing v produces greater smoothing. It follows from the second equation
" in (13) and (5) that e s approximately proportional to v so that only a very
- jew values of y need to be used in order tofind one giving e the desired magnitude.
However, one additional matrix inversion. is needed for each new value of v

used. The value of € is determined from the accuracy of the g; .

Eza.mpk§ =E RS ? . R T I A TS SOF TR IR, S
Ezample 1. Let the problem be the following:

[ K@= 21) dz = g0

where
‘k K(z.)=l1 -'l-,cos‘-%z, | | T 2] €3,
, =l | | lz| > 3;
g(Z)=(6+)\)(1—%cos%)\)_—%sin%, - lz] <6,
= 0, | | 1z| 2 6.

The solution to this problem is f(z) = K (z). Hence we can easily check the
numerical solution against the true solution. Let us first taken = 12 (13 points)
_ use Simpson’s rule for the ﬁadratu:emmis

about 4. The values ol g are rounhea off S0 that the maximum error in g(};) is
100005. Table I and Figure 1 give the comparison between the true solution and

the numerical solution for several choices of ~. Since the solution is symmetric
’ )

_ ) . TABLE 1 L '}
L 1 ' | P | E )
R B L e I e
0 20000 2.948 | 23%6 = 2.082 ©z.017 | 1.048 | 1.843 ¢ 1706
1] 15000 ; 1136 | 1404 | 1478 | 1.488 , 1.480 1.476 1463
2| .soo0 | .69 | .38 464, .50 | . .559 .651 686
3 .00 | 014 ) 07 _002 | —.016 | —.014 | .016 | .04
41 .0000 | .000 | —.034 | 031 :  .019 | —.026 | —.105 | -.120
= oo00 . .000 ! 005 | .020 i .038 | .034 .009 | —.009
6 0000 000 | —.012 i —.128 | —.138 | — .09 110 | .13
X S j— ! * ;
ave. || ...... 0 .010 ! .020 ¢ .026 047 .105 ! .140
mex. l| ... 0 i .06 .03 .08 ; .09 208 | .42
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60 Classical methods and numerical inversion

where gi= g(x:), fi=f(xj) and Aj;= wjki;. It is a simple matter, in prin-
ciple, to resolve this system (for m > n) to yield an n-point numerical
approximation to the solution. In particular, taking n=m yields an ‘exact’
numerical solution—one that ‘models’ the discrete data function to within
numerical round-off.

At first sight it would appear that the system in equation (5.4) prov_ij:l'gasw

a simple, robust mumerical inversion technique for resolving equation (5.2).

In practice however, the quadrature metﬁa_ﬁ runs up against severe
d

difficulties. in particular, when an attempt is made to refine the discretised
solution by increasing the number of support points in the source function

representation, the conditioning (cf §5 “$73) of the matrix system generally

£ P A AR O St

worsens disastrously, leading to a severe magnification of data (and
Trecretisation) _errors and _eventually 1o “quite meaningless, highly
oscillatory, numerical solutions. For the simplest case of a square matrix
system (m = n) the numerical inversion deteriorates as the matrix operator
A~! begins to reflect, more and more closely, the unboundedness of the
original integral operator #~' (cf §4.3.1). The problem is generally most
severe for strongly smoothing kernels (cf §5.3) but, in any given case, an
optimum representaton can usually be found by judiciously selecting the
spacing of the discretisation mesh (xi, ;) in addition to the number of
support points (n) in the numerical solution. It is disturbing, none the less,
to obtain a numerical formulation of the problem, the solution of which
depends critically on what appears to be an essentially arbitrary numerical
mesh. It also conflicts with the notions of classical numerical analysis to the
extent that numerical solutions are expected to show some degree of con-
vergence as discretisation errors are systematically reduced—provided of
course that round-off error is kept at bay. '

We return to a more quantitative discussion of the numerical instability

in §5.3.




14 coveLuston

UTILIZANOO QN HME Todo D&
I'N TEGkAcio'a/ NMUMERIcA DIRECTA
Pd rd REPRESCEN7A R NUMERIAHENTE
v A TRAVLFORIAAA N TESRAL
HAY Gé‘ﬂfta@ﬂtrrurc TRORBLEM™MAS

(rwcuo.r y MUY GRA mt'_r)@**<l ECR)

=3 RO, SOBRE 70VODLO 2,

COANDO SC ITILizn SIMPSoON

y/ LO MAS G6RAVE ES AUE Lo
RE COMENDAN

1 PMpSs oLRave AUV E5 O UL
cs70 5 Y ERA PREVISIBLE

-\f QUE LOI BUE Lo
()‘EQ&\"\{ E/LUD/JU QoA Nn Do

oN cran Péesl CA EvTS, .



JUCGUEMNoOS « /N TECRA L

Poa SL(OPSOU

Ce

+ i
f EEE
_f; € A x

} ote Aveiss \ry._f)\,gu,, fe j"

Paazd Tobor cetog VACE Lo

LQ‘LA \/\,u.,m (5 VCCC, e leiriee “1_\\%
o e d o, agxfguoeTﬂv X< - U
(O fre | LM Ai"wLéf l’-»ef& e fz-sf& Yo
W e

<

_ (x~9)  _(xe-m®
d‘[; L OLYL L 2 W(c 1L e '
o 7721_ - < e o //\ @ :

kb g Y- ivadiwan
f/f(;i(ﬂ% cho( iy cen Ao  Mden o
_ ch;[’\ -'L—_C‘»fn‘fouu- Lo H%Lbu;x% H ,'



1

Ke=2 Ky,

X
Wo Wi WL Wj Wy Wr We Wy W? WQ| U[.D Wl\ij

Xo X4 X X3 Rq¢ X[ X Xx Xy Kq

) /72-3/\6/4@ ['foc e dlveagss veloas, & (51\
(J(/' ‘ O”L T 7-3
, /(CL. O(JGJN:“J&Y_, X(c_r (L,Qé(,u‘aéa_, e &L&AQ{DM _-
(;PO(L Elle upaaed QJE eowlae
N Ul D) Virion (DIScrETI Fdcion/
PEedL e Dc-,fﬁd \f/f’v&rmﬂtax,'ﬂ

INEERES /ORI SNLFESESE SN R
ENERRARS ARMEES WSESESE FES TSR ESTL SR
Y Torae une (Faaies ) se Si7es

PO 7oy TAD &V PAey  Lg
V/dé/rrd@Lc; y '



NUME Al CA qE NTE

v N p
2
- Xﬁjl - . Kp—_éﬂf?;
& ( Av - =T W, __Q__(

ﬁ [ = o [\KL

-

b

TR UAPE Cl OF

\kfc:?’; 'TA‘ W(’;WL;“er—-f‘:(.UE{:*—— W/‘/“f:A

&«‘J[&uc}c_ Qa-&u Loy

Mu/bd&_, o e fo gih RV

2

2
~ 4
A — 4

A =41
,[x,‘_wl

X,t_"'vf TL(L Q
o 5 o6uiiSe 12
4 2 23553y (o7
2 ). 0333uUq =%
3
L/,

6662658 157
6.3 g1 15°
S c_zdw_g. N oiw(\ﬁuw‘tz ﬁiﬁn £ (»
CJoscla | pohe s PESoT SN IGLALES
""" o We = A =1 N 1 BT R
W _(k=1) AN BEERY LR
> W MY - S INIEY - SR L .Y T
=B BT R R

= f,0oc0o] 03



MC/QQQJA@M_(T [rein— Pz o &
VN A CASUA C I 2D

< a="1,
_L (X '(")]z'
X e =9 I8 ¢ J
O S-éq[fggi;ﬁ‘ WL-{..:.-—-\
0.§ G.293¢7z2 17" [pre T2 e
A 92,0258 (> fel s o
g0 S queste " I
Vi / oj?D“’% /-
7 /. 0fS1er /7
3 6 .5cycsa >0
N 259N 12
i &.3¢9(¢F3 [_5?
v Q/,[“tf’cf)z -
== W | | e

LQ MvuJJ?ci’e -&m uﬂre r/u.w— (/// RN
},‘(LC (/\&LL‘;’ Q—Q \ i -




/e

= L’{-jfﬁ é——-— = é: Q_’___, :
/o fo . - I

\f

S

- 3.01679]096

—

F

CT;} wtua‘ﬂe ot
UTECgA MU U E (2~ €

_ql st 91
.

- Wo € %U[@_—+W&@_“‘ €.
[a S yes

e

PEOR @ UE  cold TpaA@EC(=S

es. cofaclofol )

 (peco es %

4
w, e
L



G~ \/? = Xq A = L
OZQ LL\{”QWLQ_ veLe O.9%3 $C -

MUCHISINA  P(TE rENcld

(J“\ d - //L

e ui’(@.quwf& 59999c¢c

LUE G O HA7 OSCICACIDUELS

}MPJ@?’AN75£ E A Corl (f,dQQﬁ,c?f

DPE pEMNDIBMD 9& . Pol(c/oN
Pe )5
Y

DEL VAdloe DE Lo p
PEso g A 80 C/ALDOE

AC7Ea VAN eid

N EiTo EM VN CASS hey T
PrrLE T T T



MUCHOS ,
I .
MUCHI LI oS

DE Lof RESUOL7ADEOS
CATASTROFICOL EW L4
ITWVERCIDN DE
TRANSFORMA D AS
INTEGRALE S

PRO VIENE N DE

LA "DIscrETreaciow”

DIt c7a CON |

PLios DE INTEERALION
f LifeS oV

(PPPO..



REPETIDO PE JWTECRACION NJJERCLA
O PRAOBRLEMA HMUCHO NAS DELicapD

A PARECE CUAWDD (A BunCrs o  Flx)
DE PENDE PE UV PIRAMNETZo A i £ 0%)
DE 74L F>2NA QUS PUEDLA
CAM@laR Jo ForRA FopyClonvAL PaAeA

DIFERE VTE S VALS R Er PE Efte
PR RA RE Tres

. NTOWVLE S PO £ PE TV RRILA QUE
PARA CADA VALor D& MW ExtStirA

UNA FoeMAR D& [(NTE CrACION NUNERICA

Nue Op TUHVC & LA (NTEGRAL
B | s
/ Hox dx = 2 W,k F(xre)
P\ _ 'J’z'{

= ( PECIR PORA CADA A EL CONJUNTS
DS OROEMNADAS DISCRETAS v EC
CONJUNTo DE PESos ASOQ/IADLSS SErA
DIFE RETNTE |

Y, A VECES TENE nos &UE HALErR
MUECHAS [INTEGRALES 7QR2a4 (Rocuay
f-'_'\ (y.) CowN EL Mg M o CDN(/‘UJ\/Z'Q‘ D
ORPE VALAS DISCRETAS Ixgh 9 &
fMUShS  CWJUNTO PE PEsos ASoclAbAS.

feNCcLU Siow V)



SN 45 ECUACIONES INTE 6RLAL &y

S€ P(lc’:'SE'U‘?A, DG\!IANEM‘TE’ ¢ A
Dfejecdt TR D ANTE R|OR

—

LA PUUC!L:;?\‘ (—lx) @&UE HAY
Q VE (INTEGRrAR & DE FENLE DE ¢
PrEANETRD Y

&

/ < €9, %) f(y.) R
A —

AS/ d)uc?.- - MUcHeS cutlPAPD
— hucnp ExPERIENC/A

O RUS cp & S TRDS ne o000,

EU EL CASO EN EL dUVUE EcC

[NTERVALD DE (ST EGCRACION (A 8)

el FI NI TD |

Ll REPRESENTACION FUNCIONAL

L (Nrcerappe S pASAH = A

A p/c:,')\t_;.f'mc(o,uc".r 7oLt Mo FriACS |

peE ;. [UTLGRA VPO |

Y U PolLiNMN2t~ o EI UMV PoLl po MO
AUN B UE SUs CoeEICIiC NTES PERSVDRN
DEL' PARAHME Ters Y. | |

AS|] ®QUE, AL hewvosr W €{7Te CAJ:C
PUEDPE SERVIENwr ESTE HeEe 7o OO




EN EL CAtD PE LA EDNVOLUCILOW
CpuULS) A ML

L\

@(‘7}7 %

PaRa cAva Y Tevimesr upa
CRUSSIANA  CENTRAPA  Precicat UL
ENMN esc Y |

NeSA R
§ \1) ?CN&L):

PopreMrmor ECEGIR VXN coprjuirzes
COMUNV DPE 9pDEaAdbPAr Xt

~ DownE EVARYLREM p zf["t‘-/

Y €L CoVvIUNTO pg PESS ¢
CorRES po v DrarvTs Wi

FERro ESosc (éEsog W
ASocidpos AL CEowguiro fro

T(ENEN BLUE g TALE S

RJe
¥ _ 'S h(}("f\,f
/(2"(7C w Px = % Z W-

SEA [EuaL fpeA Topo /

/ o
LO QUE NO ocUu@R(A ANTES



Por EJEMPCDO
EN €L CALo pe LAYQ

+2 AN SEDR M ADA D€ (APLACE

3 (4] :je,x\/ Drx) Lx

w(sTena bDc ORDLENA DAN

UN
TALES QuUT

PDISCRETAS 4?(&?

| _a |

Jlyl - ZF_ Wte) € 1 Llrel
JEA OPT( MR

hEPeN DERA

e~ TRAOR DINVA RIAMEN TE

T Lu—Qv = o oluve. el —

-4

b.‘ VLAY U FO&L{' -t\ CQA _b0’ (_,L



