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Neither direct nor least squares methods work well in ill-conditioned Sys-
tems — as we have just seen. Since in either case the root cause is the exis-
tence of very small eigenvalues in A or A"A, the only procedures which can
be expected to improve the situation are those which in some way increase
the magnitude of the eigenvalues. Since A is computed from the kernel:
associated with the Various measurements We can change the eigenvalues
only if we change the question which We are asking of the measured data anc
since error In g has been seen to be the other problem element, it is appropri-
ate that the rephrased question should involve the error,
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If we make M measurements at y,, Y25 ¥Ym, g(y) Or g is thereby defined
only at those points and to within the measurement error. It is not defined
in the sense of Fig. 6.1a. One could in fact define a set of error bars (Fig.
6.1b) or zones (Fig. 6.1c) and say that g(Y) 1s arbitrary except that it passes
through each of the bars or zones; the relationship:

b
mm=jkﬂmxwunm

implies that there exists in the f, x domain a set (probably infinite) of f(x)
Whichivare.-associated (through . thewintegral eguation) with 2(y)’s which
pass through the required bars (zones). To within the limits set by our mea-
surements these are all “solutions’’; thes ambiguity can only be removed-by-
imposing an additional condition or criterion (not deriving from the'mea!
surements) which enables one of ihe set of possible f(x) to be selectas
may for example ask for the smoothest flx) or the f(x) with the smallest
Mmaximum deviation from the mean — but it is Most important to realise that
the additional condition is arbitrary. The measurements in themselves give
no basis for suggesting that f(x) is likely to be smooth or anything else. We
select arbitrarily the smoothest f(x) to represent all of the set of possible

flx).
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We begin by discussing the well known method of regularisation §This

* non-classical technique was first developed by Phillips (1962) and Twomey.

1963) and, independently; along more mathematical lines by Tikomov "
(1963 S | et

e

B | B e



In the non-classical approach to the inversion problem this difficulty is
recognised at the outset: the information which is fundamentally ‘lacking
in the data’ and which is required to stabilise the problem is introduced in
the form of structure constraints on the source function. In this way,
through the introduction of a priori information, the non-classical

approach effectively transforms the original ill posed problem f=x"g,
- into an inversion problem that is stable.
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This solution process can be looked at in the foié’ou.:mg way: a fixed Uai;m
e? is assigned to lel? = |Af — gI* — this is the quantity which meaf:sures;fe
“soodness’ of f as a possible solution ofza‘he e%uar:on_ Af=§. Qf al rioss;mz
vectors a small subset will have 1Af — gl <e ;Ipromded e“ is of , e Smbgg
order as the uncertainties involved all vectors in the sub.set are accep ;
as p.mssfbfe solutions. We now select from this subset a unigue f which is the
smoothest as judged by the measure a(f).



The Method of Regularisation

In the method of regularisation the extra information required to stabilise
the inversion, or to complete the definition of the problem, is introduced
by way of a ‘smoothness condition’ on the source function. A solution is
then obtuined by bounding an appropriate /inear functional of the source
function, say &f, subject to the classical constraint |[.%f—Z|| being
minimised. In other words the problem is reduced to solving

l#f =& || %+ N IRA]1* = min (6.8)

where A, the regularisation parameter, emerges as a Lagrange multiplier in
the minimisation procedure. ' '
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This is the equation for constrained linear inversion. The usual procedure
for applying this equation is to choose several values for ,\ and then post-
facto decide the most appropriate value for )\ by computing the residual
A f — gl; if this is appreciably larger than the overall error in g due to all
causes (experimental error, quadrature error, etc.) then } is too large — the
solution has been constrained too much; ifulAuf —glisssmallessthansth
_estimated erro: winpgrone has an underconstrain
“ponent or part of it has been inverted and spurious oscillations put into the

oo

solution.
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For example, the first differences (f; — f2), (fo — f3), ..., (fa—1 — Fa) are
contained in Kf when:

[ O
1 —] 0] I
f1—Fa
0 1 —1
- | fa—Ffz
R = & ‘S‘f:
1 =1 0 | |
| fv— —1In
. R i |

The guadratic measure Z(f;—; — f;)* is therefore given by the inner prod-

uct of f with itself, i.e.:
-7 - -—
a=RAHRF=FRR.S

So the corresponding H is:

H=RR
Hence H is explicitly:
F 1 -1 i
s | B =]
& o -1 2 -1




If sums of squares of second differences were used to obtain g, the result
would be:

o i 1 — 1 o j
| I {

—1 2 = | =g & =4 1
R.=| =1 g =gty H=l1 <4 & =4 1 : .
| | |
I J 0 1 —4 6 —4 1 . i
L L -]

We have, for third differences:

0 1 —3 3 -1
0 0 -3 10 =12 6 =7
o 0 0 3 —-12 19 —15 6
R=1 -3 3 -1 : H=—1 6 —15 20 —15 6
1 =3 3 -1 —1 6 —15 20 —15
1 —3 3 1




Another commonly used expression for g is given by the sums of the
squares of the elements of fi use of this constraint selects that f which has

nal.

H is evidently the identity matrix.

Tos o —
LT 1§ the case of zero-order regularisation,
(KTK+A\)f=KTg

where | is the identity matrix of order n.

the least value of TfF = f*f; this quantity corresponds to the power in a sig-

- EEE—



: | -
A closely related constraint is given by the varance of f, Z{fi [y~
being the average Nt X, f;. The appropriate H is readily obtained In each

case:

g=Z(fi—H%

W the differences from the average are given by:

[a—-n1 —N—1 —N—1 =, -i
—N1 (1-—N71) N3 —N"1 -N"L
R =t —N—1 L=pty =N N1 . |
| (1—N7)

| ki - T
0,i+#j

=N_1"Nﬁ|'j =T (5;—;- = 2 . )
1 .E={

Thus the diagonal elements of H are given by:
hy=(N—1)N2+(1—N1)2=N2[N—1+(N—1)>2]=N"?*N*>—N)

=TL—N%)
and the off-diagonal elements are:
hy=(N—2)N2—21—N*)N*'=NZ?N—-2—-2(N—1)]=—N"

So H is equal to R.. (This matrix therefore has the interesting property

that it equals itself squared; it is in fact the sum of the identity matrix and a
singular matrix containing —N— 1 in every position.)



Many other formulae may be arrived at to give other measures of smooth-
ness, but in practice they differ very little in the final result — indeed, if
they gave very different final results this would represent an ambiguity

which would invalidate the whole method.

More general constraints (e.g. Tikonov 1963) can be constructed by taking
a linear superposition of derivatives. :

? (fFaof+oarf +aaf"+....



A. N. Tikhonov®™%1 has introduced the concept of
regularization of the solution of an incorrectly posed
problem. This is taken to mean the construction of a
family of correctly posed problems depending on a reg-
ularization parameter a, which has the property that
for a — 0 and when the errors of the right member
also simultaneously approach zero the solution of the
correctly posed problem approaches the true solution
of the incorrectly posed problem. Equation (11) was
postulated and studied by Tikhonov, independently of
Phillips, as a regularized equation with the regulariza-
tion parameter o. In its practical application the Ti-
khonov method is 1dentlcal with the Phillips method,
perhaps with the mfference that the 1ndef1mteness of the
parameter o follows naturally from the very idea of
regularization, whereas.in Phillips’ approach it is a bit
of an embarrassment, to a certain extent discrediting
the method (on this see below). It must be remarked,
by the way, that in a number of papers elaborating Ti-
khonov’s idea, algorithms have been proposed for the
determination of a, but they can scarcely be regarded
as having an real foundation, since the source or even
the exact form of the a priori information remams an

~_open question,




6.2.4 Statistical regularisation

So far the recovery of the source function has been treated as an entirely
deterministic problem, with no account taken of the stochastic nature of the
measured data function. It is possible however, to construct regularisation
methods using statistical rather than deterministic arguments. In this case
the extra information required to stabilise the problem may be incorporated
using Baysian strategies by invoking a prior probability distribution for the
unknown function. This is accomplished by introducing a regularising func-
tional in much the same way as in the deterministic problem. An excellent
review of the statistical approach, and ill posed problems in general, can be
found in Turchin er a/ (1971). We give only a brief description here (see also
Strand and Westwater 1968, Franklin 1970).

It is assumed, at the outset, that the errors associated with the measured
function (6g:) are independent, normally distributed and have zero expect-
ation. For the case in which the prior probability distribution is uniform,
corresponding to trivial a priori information—that is essentially no
correlation between adjacent source function values—the Baysian strategy
reduces to the classical method of least squares.
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Forms of constraint when the statistics of the unknown distribution are
known

In some inversion problems, nothing at all is known about the unknown
funection f(x). One can obtain an inversion using some objective constraint
such as minimization of variance ™ SUtHEESTIItIoN thus'Gbtainedshassacons
AEYOT ambiguitv@bowmeit. One can have some confidence
about the general shape of the solution but finer structure i1s another ques-
tion. In other situations a considerable amount of background exists — per-
haps measurements by direct methods have been made, as is the case with
atmospheric temperature profiles, which were measured by balloon-borne and
aircraft-borne instruments long before satellite-borne indirect measurements
were possible. These measurements showed, for example, that relatively
steady gradients were to be expected through certain layers of the atmo-
sphere while sharper excursions and reversals of gradient tended to occur at
more or less predictable levels. Furthermore fluctuations from the norm at
different levels tended to be correlated with each other, in the sense that
some certain layer being warmer than average might imply a high probability
of certain other layers being colder than average, and so on. It is possible
to construct constraints which allow for such correlations — but it 1s im-
portant to realise that by so doing one is pushing the indirectly sensed solu-
tions towards conformity with the body of past data obtained by more
direct methods. Such a forcing is difficult to justify if it is applied, for exam-
ple, in regions of the globe where no body of past data exist.

A straightforward method of taking into account the tendencies existing
in a body of past data is to construct from the past data a suitable set of base
functions for approximating the unknown f(x). In a crude way this can be
done by deriving the mean f(x) of all past data and finding a constrained
solution which minimizes the mean-square departure from this mean.

To do this one merely uses for the quadratic form g the square norm of
(f — b), b being the expected (mean) value towards which we wish to bias f.
In the usual way, the solution is obtained by finding the extremum of:

Tho ' L o T s -

ST IO

Fatg aiFatanl=h
i 21Tl e

(Af—2) (Af—g)+y(f—h)(f—h)
which is given by:
elA'Af—e Agryerf—yerh=0 (k=1,2, .. N)
or:
f=(A"A+~1)7 (A'g+7h)

When there is a reasonable basis for choosing a particular b, this formula
gives a useful improvement. But if b is unrealistic the attempt to force fto
stay close to b results in spurious oscillations of the solution.
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6.3.1 Maximum entropy solution

A method which has been used extensively in astronomical, two-
dimensional, data image processing is the maximum entropy technique.
Although not as well developed mathematically as the regularisation
method, maximum entropy can be understood in much the same general
terms. We shall consider only the main features of the method here: further
details can be found in for example Gull and Daniel (1978).

In common with regularisation, the maximum entropy approach imposes
4 structure constraint on the unknown function. Specifically, a solution is
sought that maximises a non-linear entropy functional (22, fj In f;) subject
to the constraint that it ‘fits the data’ within the known observational
uncertainties. In matrix form the problem to be solved reduces to

al| Kfa—813+ Z;_ﬁ-lnjj:max (6.30)
Jl=

where « is an undetermined Lagrange multiplier (cf equation (6.8)). The
entropy term clearly has the effect of smoothing the source function since,
in the limit of zero data weighting (a = 0) the recovered f is everywhere
constant, i.e. it is ‘flat’ and of undetermined amplitude. This corresponds,
in the context of two-dimensional image processing, to an a priori image
of uniform intensity containing minimum information, that is, ‘zero
structure’.

The computational method begins by taking a uniform solution, which
is normalised to preserve the brightness of the image—as determined by the
measured data function—and the user introduces more empirical informa-
tion into the problem by increasing « until the recovered source function
is sufficiently structured to fit the data: in practice, « is generally the
smallest value consistent with say a x* fitting test. The computational
algorithm is developed by differentiating equation (6.30) with respect to fi
and expressing the resulting implicit equation as an iterative scheme for the
unknown component. Note that the non-linear entropy constraint precludes
a closed form matrix solution, in contrast to the regularisation method.
After each iteration the maximum entropy solution is renormalised to
preserve the measured brightness of the image.
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[t is clear from the above outline that the maximum entropy technique,
when stripped of its image processing guise, has much in common with the

method of regularisation. One essential difference is the non-linear

smoothness constraint represented by the entropy functional. The view is
sometimes advanced that maximum entropy has the advantage of implicitly
requiring the positive definiteness of the source function. But this view can
be misleading since zeroth-order regularisation also implies a positive
definite function in the limit of the large A (equation (6.15)), at least given
a positive semi-definite kernel function.

r

To investigate the matter further let us determine an appmx:mate maﬁﬂ
solution to equation (6.30), by linearising the maximum entropy constraint.
Specifically, if we differentiate equation (6.30) with respect to f and use the
approximation that log fi = (fx — 1) valid for near flat pictures (fi = 1) we
find the matrix solution is given by

(KK + 1)fs = oK g, (6.31)

This is just the solution for zeroth-order regularisation with o pla}r_g the

role of the regularisation parameter. Lemng a — 0 shows that f, — 0 (i.e.

flatness when normalised) Lhmugh a sequence of parallel vectors, aK"g, of
ever decreasing magnitude. The matrix solution is therefore consistent with
the notion that the data-function determines the form of the unknown
function for > 0. Observe also that a positive definite solution leads to a
positive definite inversion.

Of course, some choice must be made for the unknown parameter «, a
practical detail of much importance. It 1s clear that the maximum entropy
strategy outlined above determines the least structured solution consistent

“with the data. In this sense it is analogous to the Phillips criterion (equation

(6.28)) for the deterministic regularisation problem. In practice, the
recovered function will probably be oversmoothed (§6.2.4); nonetheless the
inversion is consistent with the strategy of rejecting those high frequency
components that are not unambiguously imposed by the data.

Finally, it is of interest to note the recent claim that, of all the regularisa-
tion methods, maximum entropy represents the only ‘consistent approach’
to the data inversion problem (e.g. Skilling 1984). Certainly, from the
perspective of utilising prior information to construct an optimum flter for
the problem at hand, the general validity of this claim is far from apparent.
This is not to say that certain data sets and certain experimental procedures
are not especially susceptible to the maximum entropy technique. However,
it is easy to see that maximum entropy is quite incapable of providing the
most effective stabilisation for many inversion problems. Consider, for
example, the problem of numerical differentiation discussed in §5.3
(example B): this was most effectively stabilised by bounding the second
derivative of the unknown function.




Measures of smoothness

Suppose g(f) is some non-negative scalar measure

of the deviations from:smoothness in f; if fis varied until
q(f) becomes a minimﬁm,_ the resulting f may be completely

smooth In the sense thatq(ﬁ will be zero.
Now let g be incorporated with the least, squares

procedure so that one | mini_mizes not (Af — 3)2 g
the least squares method, but |Af — gI? +174(f), where

7Y is-a parameter which can be varied from zero to infinity.

Obviously with y = e minimization leads to q(ﬁ-= 0,

ie. a perfectly' smooth f (Judged by the measure g)

The-early work along these lines, by Phillips (1962), suggested choosing
? (/X0 minimise the norm of the second derivative of the solution. In other

words, of all the solutions that can ‘fit the data’ the one is chosen that
minimis:s

=2 ' J
Gy =Ir 3= | 1 ax

subject to the classical condition that |#f—& 2= || g |3 This form of
Structure condition is quite natural since by considering only ‘sufficiently

smooth’ functions there is a tendency to eliminate oscillatory solutions that
arise through data noise.



ELECCION DEL PARAMETRO DE
REGULARLEACION A |
In all

(\cam the practical problem generally reduces to adopting a regularisatiqn
parameter that balances the size of the residual against the smoothness of

the solution, as defined by iR/ ||-

Of course oscillatory structure may also be

present in the real source function for physical reasons but the filtering
action of the kernel submerges the signature of such structure in the data
noise. In order to be confident that only real structure is recovered
therefore, suppression of oscillatory components by smoothing is essential.)

. Speaking generally however,
there is no universal strategy for selecting the optimum A, _qu, within the
imit 0 < N < haan, it is probably best to regard A as effectively undefined
in any specific case _ ' o

™

As far as the practical numerical solution is concerned, it should be noted
\ that A must be chosen large enough to maintain a well conditioned

. numerical procedure (Culham 1979). I
1 TR JIAL

A compromise must

( be reached but there appears to be no general strategy for chon_sing the op-
| timum ), '

Yet in practical
applications the tendency is to regularise the problem in a rather arbitrary
fashion (see references in Culham 1979) without worrying overmuch about
problems of convergence. In any specific inversion therefore it is worth-
while, at the very least, performing test-case numerical (or analytic) experi-
ments with a wide variety of trial source functions to check whether, for a
predetermined smoothing functional, the regularised solution converges
adequately to the true solution as data errors are systematically reduced.
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Prea ACH&AKR
REGLA DE&E OO0

If we do not go into the detailed analysis of the noise problem by
finding the eigenvalues and eigenvectors of the matrix 44, it is still
imperative that we should convince ourselves that the physical
noise will not drown out our alleged solution. For this purpose we
modify the given right side by random quantities of the order of
magnitude of the errors of the measurements and observe the influence
of this modification on our solution. If the solution changes by too
large amounts as the result of this perturbation, we must come to
the conclusion that our solution, although mathematically correct,
cannot be considered an adequate solution of the given physical
problem.
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