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In this first of a series of papers, a group-theoretic study is presented of the quasi-intelligent states which
are a generalization of the intelligent states satisfying equality in the Heisenberg uncertainty relation
AJIAT 2> (1/4)KJ;pP. A method based on the knowledge of a certain generating function is given for

the calculation of matrix elements of polynomials in the infinitesimal generators of the rotation group
between quasi-intelligent states. Examples of such computations are also included to exhibit the

improvement and efficiency of the present methods.

I. INTRODUCTION

Aragone et al.! have recently considered the states of
a well-defined angular momentum which satisfy equality
aJinJt =11(J3) 12 in the Heisenberg uncertainty relation
derived from the commutation relation [Jy, J;] =éJ5.
Unlike the Glauber coherent states of a linear harmonic
oscillator, these states are not generally the minimum
uncertainty states, i.e., AJ}aJ% does not take a mini-
mum value for them.

In the following series of papers, we shall attempt to
present a somewhat different but more manifest method
of handling these states which are called intelligent
states in the literature. Our papers will clarify the
algebraic structure of these states and emphasize the
distinction between them and the usual Wigner states

lim).

In the present paper, we introduce the group-theo-
retic structure and present methods for the computation
of elementary matrix elements of the generators be-
tween these states. In the second paper of the series
we examine the problem of the computation of the
Clebsch—Gordan coefficients for the intelligent states.
In the third paper, we hope to present certain physical
applications.

The present paper is organized as follows. In Sec. II,
we repeat briefly, for completeness, the argument that
the states which satisfy equality in the Heisenberg un-
certainty relation are indeed eigenstates of a non-
Herwmitian operator J§ with a known spectrum. In Sec.
III, we give the operators which together with J§ form
the same algebra as that formed by the infinitesimal
generators of the three-dimensional rotation group. In
this section, we also present a compact representation
'of these states up to normalization in terms of the
operation of the infinitesimal generators of the rotation
group on the Wigner states. A simple expression for
the normalization coefficients is also obtained in this
section.

In Sec. IV, we arrive at a manifest connection be-
tween the intelligent states and the Wigner states. This
connection also leads to another, somewhat more com-
plicated, expression for the normalization coefficients
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which is shown to be equivalent to the simpler expres-
sion presented in Sec. III,

Section V is devoted to the computation of some ele-
mentary matrix elements by mentioning that a certain
generating function is trivially calculable using our
methods. With the use of this generating function, these
elementary matrix elements can easily be calculated.
This section ends with a few examples to illustrate the
efficiency of our approach,

Il. THE HEISENBERG UNCERTAINTY RELATION

Let us start with the commutator [A, B]|=¢C, where
A and B are Hermitian (and hence C is also Hermitian).
For any state ¢, defining

QA = [v*(A - (AN drT, 1)
we obtain
(AAYR = [(A={4y)|*dr (2)

since A is Hermitian,
Now we use the Schwartz inequality

[lrltar [igl*dr= [|rgltar=] [ frear|, 3)
with f= (A - (A))¥ and g=(B - {(B)) 4. This results in

QAP (@B =| [u*(A - (A)B - (B) paT|?, (4)
where the equality sign will hold if and only if
(B=(B)h=x(A-(A)Y, (5)

where, so far, X is any (possibly a complex) number.

Next we try to relate the right-hand side in the in-
equality given in Eq. (4) above to {C). We note that

(A-(AN(B-(B))
=z [(A-(ANB - (B) + (B- (B)(A-(4))]
+3l(A - (A)(B-(B)) - (B-(B)(A-(A))]

=F +%iC, (6)
where
F=3[(A-{A)B-B)+(B-(B)A-(A))] (7a)
and
(A -{AB-(B)) - (B~ (B)(A-(A)=[4, B]=iC.
(7b)
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Since F and C are Hermitian operators, (F) and {C)
are both real numbers and we find

[(F+ 50 [P = |® P+ = 1O, ®)
where again the equality will hold provided (F)=0.
Combining Egs. (4), (6), and (8), we arrive at
(aAR@BY= 1), ®)

which is the well-known Heisenberg uncertainty
relation.®

Our interest is basically in understanding when we
shall have an equality in Eq. (9). From the argument
presented above, it is now clear that the equality will
hold for thoge states ¢ for which

(B - (B)) ¥ =MA - (A)) ¥ (102)
and

(F)=0. (10b)

Equations (7) and (10) now lead to

AMAaA) + % (aB)?: =0 (11a)
and

AaA) - %(AB)Z ={C), (11b)
which imply

A=l o (12)

where since {C) and (AA)? are both real, X is indeed
pure imaginary. This shows that the states ¥ for which
the Heisenberg uncertainty relation has an equality are
those for which

(A-iaB)p=(A)-ia(B)), (13)

i.e., they are eigenstates of the operator A - ia B for
real o, (Note that we have replaced the purely imagi-
nary number 37! by io.)

Let us now apply the above result to the special case
where A, B, C are Jy, Jy, J3—the generators of the in-
finitesimal rotations in the three-dimensional space.
Then we note that the states for which

(AJ1)2 (AJz)z =% | (3 |2

are eigenstates of the non-Hermitian operator Jy —iad,
for some real ¢, In the following, we shall explicitly
determine these states (called the intelligent states in
the literature) for a given angular momentum j as a
linear combination of the Wigner states !jm) and also
study their properties.

I1l. THE OPERATORS J} («) AND J' (@)

Though intelligent states correspond to real @ only,
we shall consider the more general situation, where «o
is any complex number (the corresponding eigenstates
of Jy — iad, may be called quasi-intelligent states).

We define®

Jy - iO/J2
JiHa) = (143)
3( ) (1 —a? ) 72
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and

pry o i
Ji(oz)—?F (1_012)1/2 Jii: (1_02){7’7 Jz—J:; (14b)
for any complex o #+ 1, (This restriction will be clear
soon. ) The operators J§{a) and J!(«) satisfy the com-
mutation relations

[F5(a), T2 (o)) == I7(@) (15a)
and
[Vi{e), I2(e)] =2J3(a), (15b)
which are exactly the same as those satisfied by
gy, J, =J1 iy, Also
=i+ B+ B= I+ ) +J5
= [JIi(@) Il (@) + T2 (@) Jia) ]+ J a). (16)

We try to construct the eigenstates of the operator
J4() as a linear combination of the states |jm) with a
given j and - j <m <j, where these (2j+1) Wigner states

are the eigenstates of the Hermitian operator Jy. Indeed
Iy | jm) =m | jm) (17a)

and

J i) =V (G~ )G+ m +1)'jm), (1)

Since J; and J° are Hermitian operators, the states
ljm) can be orthonormalized in the form

Glm? l]‘m) =0, 0,0, (18)
which is what one conventionally does,
Noting that
exp(J38) J; exp(= J38) =J; coshb +id, sinhf, (19)

we realize that the right-hand side will be proportional
to Jy - iaJ, provided one chooses 8 such that

1 : a
9= f=—
cosh [ and sinh A= an7e (20)
or
_ 4\ /2
g6:<i+z> =T (21)

and then the right-hand side of Eq. (19) is just J§(a).
With the above choice of 8, we find

explt J30) Jy exp(F J30) = %%%]277 (22a)
and

expl& J30) J, exp(F J30) = %&—;—;}} . (22b)
In particular,

exp(— J38) Ji () exp(J39) = J;. (23)
Noting also that

explt ismJy) Jy expl(Fizm Jy) =+ J3, (24)
we immediately see that the state

|jma) = exp(8J3) exp(= i 17 Jy) [jm) (25)

is indeed an eigenstate of the operator J4(a) with the
eigenvalue m. The prime on ljma) is indicative of the
fact that the state as defined may not be normalized.
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Since @ is not necessarily pure imaginary (this re-
quires |71 =1 or a =pure imaginary—{for intelligent
states ¢ is definitely not pure imaginary?) the above
state does not, in general, correspond to a rotation
of the Wigner state |jm). In fact, as we shall see, the
above state is not normalized and the (2j+ 1) states
ljmo)’ for — j<m <j are not orthogonal unless 9 is
purely imaginary. The basic veason for this is the non~
Heymiticity of the operator J5(a) of which these are
eigenstates.

Next we attempt to compute the overlap
"im'a’ L jma)!
={jm’| exp(in J) exp(6'*J3) exp(6J3) exp(= i37 Jy) [jm)
={jm’ | exp[~ (8 + 6"*) ]| jm).
(26)

The above matrix element can immediately be computed
using the 2X2 representation

5 o]
10
of Ji, in terms of which

exp[— (8 +087*%)J,]

0+ 0" . 9+9'*)
cosh< 2 ) —smh( )

L (o¥er <9+9'*>
—s1nh< 2 > cosh D)

Thus we find

IR

(S

Jy

roj=-

01:

@7

r<jm/ali]-ma>/
=(jm’ | expl= (0 +0*) J;1| jm)
= [(j+ m)! (j— m)! (j +m’)l (]"' m')l]uz(" 1)2!""”"'

<3 [cosh((8 + 87%)/2)]"™-"*¥"[sinh((6 + 67*)/2)3*m*m*-2r
v P1G+m =G +m =) =m - m +9)1

(28a)

» 2= 7)1 [cosh((6 + 07%) /2) fimon-2r (28b)
XZ:(_I) rH{i+m—-rNG=m' =) )
In particular, if we define the normalized state by
|jma> =2, () ljmoz)'
= (o’ (0))" exp(0,) exp(- i37 Jp) | jm), (29)

then the normalization coefficient a’m (@) is given by

[cosh{(6 + 6*)/2) [2m
y1(G+m =)

@ (@) =[G G- )t

« [sinh{(8 + 9*)/2)]21+2m-21] 1/2

(30a)
(j+m=r){=2m+)!

[p ey rptlemtoseyapa e,

1 G+m=1)1G~m =)

In Eq. (30a), since sinh((6 +6*)/2) is raised to an
even power, every term in the sum is nonnegative
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(6 + 6* is a real quantity) and hence the square root is
well defined,

Since the angle 6 in everything we consider appears
as a function of exp(8/2) =1/, we shall choose the 7
complex plane to be cut from — = to 0, The relationship
between a and 7 now is

_ 1/2 —

T= <1+Z> or “:%_—7:2- (31a)

In particular
47
2 _

1-« _m (31b)
and we choose

(1-ai= 20, (31c)

Thus any expression in terms of ¢ and @ can im-
mediately be expressed in terms of the variable 7. For
real o {i.e., when we are considering intelligent states
only), 7 will be taken as positive real or positive
imaginary. Indeed, all the o plane is obtained from the
upper half-plane of 7.

We end this section with a few remarks.

(1) The matrix elements (jm’| exp(- 8J,) ljm) are
evidently [see Eq. (28a) with 0 in place of 8 +6'*] sym-
metrical in the interchange m -—m’. For real 6, these
are also real. The expression in Eq. (28b) is not
manifestly symmetrical under this interchange, but it
is presented on account of its simplicity and usefulness.

(2) The matrix elements {jm’ | exp(- 8J) | jm) for
veal 6 cannot be zero except when 6 =0 since every
term on the right-hand side in Eq. (28a} is positive for
0 < 0 and is positive (negative) for 8> 0 whenever
2j+m+m’ is even (odd). This shows that the states
lyjma), —j< m<j, for given j and & are not orthogonal
unless real 9 =0, The quasi-intelligent states for a
given j and o are thus necessarily nonorthogonal unless
|7l =1 or o pure imaginary,

{3) The normalization factors &, (@) for a given j
and a are only 1 when real 8 =3(8 +0*)=0. Indeed
whenever real 8 =90, [a/, (¢)F =1 as is obvious from
Eq. (30a). For real #0, we can differentiate the ex-
pression for [a’, (¢) obtained from Eq. (30a) and note
that the derivative has the sign of tanh((6 + 6*)/2). Thus
the norms a’, (@)= 1 for 0+ 6*= 0,

Aragone ef al.® could not find the properties men-
tioned in remarks (2) and (3) above, since they lacked
simple analytic expressions for the matrix elements
of the form {jm’ | exp(~ 8J;) ljm).

(4) In the next section, we shall rewrite Eq. (29)
expressing the states ljma) for any given m as a lin-
ear combination of the (2j+ 1) Wigner states |jm’),
—j<m’=<j, This process can also be inverted, i.e.,
we can express any Wigner state |jm) in terms of the
(27 +1) quasi-intelligent states |jm’a), —j<m’<j for
a given ¢ #zx 1. (This inversion will be presented in
the second paper.) In this sense, therefore, the (2j+1)
quasi-intelligent states ljm'a), —j<m’<jfor a given
@ #x1 are complete, For o =+1(-1), Jj{a)=J; - i,

M.A. Rashid 1393

Downloaded 06 Dec 2008 to 65.39.15.37. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp



(Jy +iJy) is the usual lowering (raising) operator for
the Wigner states. The only eigenstate it has is the
Wigner state |j, - j) (14, /)) with the eigenvalue 0. Thus
for a =+ 1, the analysis presented above completely
breaks down. The question of completeness for |jma),
o =z1 is just not there. This is the reason why in the
beginning of the present section we restricted our-
selves to a #z 1,

IV. RELATIONSHIP BETWEEN THE QUASI-
INTELLIGENT STATES AND THE WIGNER STATES

We have seen that the normalized quasi-intelligent

states for given j, @ are given by
lima)y = (@ (@) exp(8J5) exp(— iz Jy) | jm). (297)

Again we can use the 2X2 representation J; =30, for
the operators J; ¢ and employ the standard techniques
to arrive at

|]ma) = (ajm(a))'i 2"’% ']m'> exp(m'g)(_ l)j*m'-Y

(G+m) G=m) (G+m) (= m")1 ]2

riG+m=v)1G+m' =) (=m=—m' +7)! (32a)
=(a’ ,(a))! 2”7_’: ljm’) exp(m’0)27(~ 1)"
[(]‘—m)ujm')x ]“2 (2j- !
(G +m) (G=m') i (G-m=-r)1G+m -7
(32)
= (2! ()1 272 | jm’) exp(m’8) 27(= 1)~
X[(j+m)1(j—m')!] /2 (25 — »)!
(j—m) (j+m’)! P G+m=NG=m =»)l
(32¢)

Using the above results in various combinations, we
obtain several equivalent expressions for the inner
product (jm’a’ ljma). Thus, for example, from Egs.
(32b) and (32¢), we find

(jm’a’|jma)

= (lljm(a)a/m'(al))J [(]+ m)l (]_ ml)!] 1/2

(G —m)(G+m')

X 5 (= 1)remerss 2841 explp(6 + 6'*)]

nrs

(2§ — 11(2j —s)!

X HAGEm=NG=n=-Nst(G=m' =s)N(j+n-s)"

(33)

Though the above expression is not manifestly sym-
metrical under the interchange m -— m' (a symmetrical
expression is obtained using the same representation
for both |jma) and ljm’a”)), yet it is useful in estab-
lishing its relationship with the expression given earlier
in Eq. (28b) when multiplied with [a’, () a’,(a")]"". In-
deed, we can perform the n-summation immediately.
[Note that # in Eq. (33) need not be an integer though
j+n, m=n are so. | This allows us to rewrite the above
results as

(jm'a’ | jma)

e H ’ 172
=Wt wuter [P R
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X2 (= 1Y*"" expl- (j = s)(8+6")]

x [3(1 = exp(8 +"*)i7-*

(2j =) 1(2j - s)!
1 G+m=mstG-m -s)@j-r-s)"

(34)

Using the transformation

Fyla, B, 8, 0, a;x,y)
= (1= %)L - 9)* o Fy (B’ﬁ“’” ﬁm) ’

where

and 4F; is the usual hypergeometrical function, " we
reproduce the expression for {jm’a’ljma) mentioned
above.

V. COMPUTATION OF THE MATRIX ELEMENTS
BETWEEN QUASI-INTELLIGENT STATES

In this section, we present a method, essentially
based on the knowledge of a generating function, for
computing matrix elements of polynomial functions of
the infinitesimal generators of the rotation group be-
tween quasi-intelligent states. We first define a gen-
erating function

G(j, my, my; g, Qg5 a, b, c)
= (Gmya, | exple[J4(cy) ]} exp(bds) expladi(a)]|jmyay).
Using (35)
J4(a@) | jma) =m|ima),
and its adjoint?
(Gma | [F(e)] = (jma | m,
we can rewrite the above generating function as
G(j, my, my; g, 0g;a,b,¢)
=explany +cmy)jmyay | exp(bdy) |imya). (36)

Now we use the method presented in Sec. III to arrive
at [see Eq. (28)]

G(j; My, Mgy (g, Qg5 a, b) C)

_ explamy+emy) ¢, . L VG R
_————ajm(m)ajmz(az)[(]+m1).(] my)l G+ mg) L (G = ma)!

&
X (= 1)¥*m*m 37 {coshi(8, + 0F + b)]-m1-ma*?r
T

x [sinh3(8y + 0F + b) ™1 m2=27 /31 (G4 g — )1

X (§+ mg = 1) (= my = my + 7)1

(37a)
__ explamy + cimy) [(j +m)! (G - mz)!] /2
B af,”(ozl) aij(Olz) (= m1(G+m!
X [sinh(8; + 65 + b) |27 ™1(= 1)¥m1'm
. (2j—»)[cosh}{(8, + 63 + by mima-tr
X?(—l) G+ my = VG =g = 1)
{(37b)
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This generating function immediately gives the matrix
element

(imey | [ T[4 )] | jmyay)

",
= a!m:?ai;najmz(az) [(] * ml)! (] - ml)! (] * mz)! (]_ m2)!]1/2

n
X (= 1)2*myrmy 58—6_" [Z} {cosh3(8,; + 6;)]-m1-m2¢2'r
1

r
x [sinh3(8y + 0F) P/ "1™ /71 (G + my - 7))
><(j+m2—r)!(—m1—m2+r)l] (38)
In particular,

(Gamgay |Jy | jymyay)

(G +m) (= m) (G + my)t (j = my) 1]/ (= 1) omy*my
almi(al) ajmz (012)

2 {[coshz(8; + 6F) ] m1merdr

X [sinhk(8, + 0F) Rirmirma-2r
X [r1(G+my= )G+ my =) (= my = my + 7)1

X 1[(= my = my + 27) tanh2(8, + 83)

+ (2j + my + my — 2¥) coth3(8, + 63)]. (39)

The diagonal matrix elements of J; are much more
interesting, We find

(jma |Jy|jma)

=-jcosﬁ[1+;—

% &,8in28(cos8) /vl (r = VI (j+m—v)1 (- m - r)!]
2 (cosd)’ /(ry (j+m =N (j=m~7)! ’

40)
where we have used the notation
tanib=|7|=|é°| (41a)
in terms of which
tanh(1(8 + 6*)) =~ cos?, (41b)
cosh?(3(6 + 6*)) = (sinb)"2. (41¢)

Equation (40) above is a generalization of the special
results given in Eq. (40) of Ref, 1 with 8 in our result
corresponding to the 8 in this reference. One has only
to go through the two calculations to appreciate the
simplicity and clarity of our methods. Also we have
manifested the part which goes to zero when 6 —0,
i.e., when o ~1 when m can only take the value - j
and the state |jma) can be none but the Wigner state
17(= 7). Incidentally this also shows that the results in
Ref. 1 are wrong by a factor of 2.

Next we calculate the matrix elements of J; and J;
between the quasi-intelligent states.

From

2my T
. . . Nyi/2 i
(jmaay|dy = iaydy |jmyay) =my(l = @) /i = 1+7

and

(42a)

21, T
(Jmyay |y +iaddy|jmyay) =my(l — )V ¥* = —l?ll’i T (42b)
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where
1-7 1-7
ai_l—I;% and a2_1+T§ ,
we conclude '
(Gmaag | Jy | jmyay)
_mof - o)+ mpay (1 - @) (43a)
- o+ af
oyl = )+ (1= 7d) 430
= oA (430)
and
(imyay | Jy | jmyey)
/2 _ o 2y1/2%
___imi(l—ai) *mz(l a,?) (44a)
oy +ay
_ (L4 3% = my i1+ 73)
=1 1A . (44b)
In particular
(Gmog | Jy |5 a}———-—mﬁi*’ﬁj {45a)
pmly jJygmay, = 1+7,7F
and
. . Ty = 7F)
(]maz’J2"7ma1)=z———L——l+T1T; (45b)
If we also wish to consider the special case where
&y = ¢y, we shall have
(Gma|d, | jima)y=2m Ret (46a)
ymeidil T+ 17T
and
(mor | &y |jma) = - 2m —2T (46b)

1+171%°

In Eq. (18) of Ref. 1 we note the factors Re7 and Im.
The remaining part of the above very simple answer is
hidden in uncomputed derivatives of certain generating
functions. With very little work, we have been able

to compute even the nondiagonal matrix elements., We
remark that since J; and J, are Hermitian, our matrix
elements in Eq. (44) must be invariant under the com-
bined operation of myay ~ mya, and complex conjugation
and indeed they are evidently so. The same property
demands that the matrix elements in Eq. (46) be real
and these are as expected.

As another example of our method, we now obtain the
matrix elements of J2, J,J, +J,J;, and J3. We shall be
able to express these matrix elements in terms of those
of J; which have been given earlier in Eq. (39).

Starting from

(mgay |y = i Iy | jmygay) = mil ~ o?), (47a)
(mgary | Iy +iag* Iy | jmya ) = md(1 — a,?)*, (47b)
and
(mgay | Ty +iay* B, = iaydy) | imyay)
=mymy (1= o)V 21 = )1/ (47c)
we arrive at
M.A. Rashid 1395
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(mpay |2 | jmyay)

_ [mL(l - o) %,  +mpa (11— 022)“2*] 2
- o+ ay*

Graz*

K (wsa)

jmaoy | Jz | jmyary),

(imaay | 5(Jydy + Jydy) | jmy s
— iy (1= 4 = g (1 = )V ) g @y * (1 - a )12
+mya, (1 - azz)”"‘)]/at +a,*

*

i Oy—0 . .
T2t a 0‘2* (Gmyay | Ty |jmyay) (48b)
and
(jmyay | | jmyay)
— [m1(1 =, )Y (1 - 0122)1/2”] 2
T ay+ay*
5 (myag |y | jmyay) . {48¢)

O/1+(12

Note that the parts on the right-hand side of Eqs. (48)
above, which are independent of J;, could have been
obtained from the matrix elements of J; and J; given
earlier in Eqs. (43) and (44), as should be the case,
since these are the values of the corresponding matrix
elements provided J; and J, commuted. Also defining
(imyay | adt|jmyay)

= (e | A jmyar) - Cimpay | J, {imya)? (49)

for i=1,2, we obtain

(jmyay |adt|jmyay)

oot . .
=~ 51—13“(2’2* (jmaay | Jy | jmycy) (50a)
and
(jmyag|add| jmyay)
1 . X
= ——— (myay | Jy | jmyay). (50b)

ay + 0y
In the above results, the m-dependence of the matrix

elements on the left is eniirvely given in terms of the
m-~dependence of the matrix elements of J;.

From Egs. (50), we conclude

(jmag) | adE| jmya ) jmgay | 6T} | meay)
a0 . ,
:m«]mza”%[]mlal))z. (51)

Considering the diagonal matrix elements, the above
result implies

1396 J. Math. Phys., Vol. 19, No. 6, June 1978

(jma|ad | jme)(jma |add | jmer)

2

which will be +((jma |y |jmea))? only when a is veal.
Thus we have verified that from amongst the quasi-
intelligent states, only the intelligent states satisfy
equality in the Heisenberg uncertainty relation and for
all other quasi-intelligent states

AdE A > 5Ty
as expected.

Since in the above example, our interest was first to
exemplify the efficiency of our method and second to
reproduce equality in the Heisenberg uncertainty rela-
tion as a check on our methods, we have not tried to
express our results in terms of the 7’s though it could
be done trivially.
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