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The number-phase uncertainty products proposed by Carruthers and Nieto are studied to determine
whether they are minimized by coherent states. It is found that cohefent states do not minimize these
products. States that do minimize some of the uncertainty products are constructed. Variational tech-
niques for the study of arbitrary uncertainty products are developed.

I. INTRODUCTION

Recent discussions of a quantum-mechanical phase
operator for harmonic oscillators have shown that a
Hermitian phase operator @op does not exist.?
Susskind and Glogower! (SG) have demonstrated
however that Hermitian sine (S) and cosine (C)
operators can be defined which have many properties
that are suggested by the nomenclature. Carruthers
and Nieto? (CN) have examined the matrix elements
of S and C between Glauber’s® coherent states. They
found that in the high-excitation (classical) limit the
expectation values of S and C, in these states, behave
as the sine and cosine of the phase of the harmonic
oscillation.

Carruthers and Nieto have also proposed several
uncertainty relations to replace the traditional expres-
sion for the number—phase uncertainty product

(AN Ay 2> 1, 1)

which is ill-defined. The proposed uncertainty prod-
ucts are given in terms of the S and C operators
and have the virtue that, when evaluated with coherent
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states, they approach their theoretic minimum for
highly excited coherent states, and remain small for
moderate excitation.

In this paper, we examine further the uncertainty
products given by CN, in order to determine whether
the coherent states do in fact give the smallest un-
certainty product. Towards this end, we develop in
Sec. I new variational techniques for determining
those normalizable states which give a minimum for
the uncertainty product of noncommuting Hermitian
operators. In Sec. III we show that the coherent states
do not minimize the number-phase uncertainty
products. We also construct states which do have the
desired property. In Sec. IV we examine the S-C
uncertainty product.

II. MINIMUM UNCERTAINTY PRODUCT

A. When two Hermitian operators X and Y do not
commute, they cannot be simultaneously diagonalized
and their uncertainty product satisfies the inequality

AXPAY) 2 AP @

Here (AX)? = (X2) — (X)?, and i4 is the commutator
of X and Y, assumed to be nonzero. A procedure for
determining the state for which the uncertainty
product, appearing in (2), is minimized was given by
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Heisenberg when X and Y are position and momentum
operators. His method holds generally when 4 is a ¢
number, and is described in any textbook on quantum
mechanics. However, if 4 is not a ¢ number, Heisen-
berg’s method cannot, in general, be used to obtain
the minimizing state. We briefly summarize here
Heisenberg’s method, show that it is inapplicable
when A4 is a ¢ number, and then develop a variational
method appropriate to the case when A4 is a ¢ number.
This latter method is also applicable when the un-
certainty product no longer has the simple form (2).

B. Heisenberg’s method consists of establishing that
for any normalizable state |'1"),

UCE) = (AXMAYY = (£2(P%) = [(RD)P + R(Y)

= {P(Y) + 10(F) + R(Y), (3a)
where
X=X-(&X),
PCY) = [([X, P2 = KX, YDI2 = (4)%,
o) = [({X, ThHie (3b)

The term R(Y) in (3a) is a positive semidefinite
remainder term, arising from an application of the
Schwartz inequality to (X2)(¥?). R(¥) vanishes if
and only if X|¥) is proportional to Y|¥). P(Y)
and Q(Y) are also positive semidefinite, depending in
general on ¥'. However, if 4 is a ¢ number, P(¥)
does not depend on ¥ since (¥ |'¥) = 1. In this case

U(Y) = {4* + 10(%) + R(Y). @

Clearly the minimum value for U is }4%, which is
reached if and only if Q and R vanish. Combining
the requirement that R vanishes with the requirement
that Q vanishes gives an equation for |'¥):

XY +iy? [¥) =0, yp real, (52)

or
X + iy YIIT) = A1),
A= X))+ ip(Y).
For future reference, we give another equation for

|¥") which follows from (5a) upon multiplication by
L —iy?:

(Sb)

[X2 + 292 — p4]|¥) = 0. (6a)

Equation (6a) shows that y may be evaluated in

terms of matrix elements of X and Y. By premultiply-
ing (6a) by (Y|, we get

A ((Ax)z)‘}

’ @vy)

BN (6b)

In obtaining (6b), we have used the fact that 4 is a ¢
number and (AX)%(AY)% = }A4% (We assume always
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that (AX%)(AY?) 5 0; viz., |'¥) is not an eigenstate of
XorY?

Equation (5b) is to be solved as an eigenvalue
equation for |¥'), with three free parameters: y,
Re 2, Im A, and a subsidiary normalization condition
(¥ |¥) =1. The state |'¥) then minimizes the
uncertainty product (3c). We refer to this method as
the direct method for obtaining the minimizing state.

C. The direct method is not in general applicable
when 4 is a ¢ number. In that eventuality, P('Y") does
depend on't', and we cannot conclude that a minimum
for U is achieved when Q and R vanish.

We now solve the minimization problem without
assuming that the commutator of X and Y is a ¢
number. For an uncertainty product of the form
(AX)*(AY), the problem is nontrivial only when the
matrix eclements of X between eigenstates of Y
diverge, and vice versa. For if they are finite, the
uncertainty product is manifestly minimized to zero
when it is evaluated with eigenstates of X or Y. The
subsequent analysis applies only to the nontrivial
problem. However, later we generalize it to the case
when the uncertainty products are not of the simple
form (AX)*(AY)? and it no longer is obvious how to
find the minimizing state, even though all matrix
elements are finite.

Since the expression for U(W) given in (3c) involves
the function R(Y) about which we have no useful
information, we return to the definition of U(Y) in
terms of matrix elements of X and Y. If U(Y) is to be
minimized, we may apply the variation principle and
require that U(¥) be stationary under arbitrary
variations of W. With the help of a Lagrange multi-
plier m, we also impose the subsidiary condition that
(¥ |¥) = 1. Considering the variation of [¥') to be
independent of (¥'|, we obtain as a necessary condition
for U(Y) to be a minimum:

U6 (Y| = m|¥). (7a)

Since U = (AX)?(AY)?, we need to evaluate 6(AX)?/
& (¥'|. From the definition of (AX)?, we have

(AX)y = (P X*|F) — (Y| X1,

S(AX2[6 (Y| = X |¥) — 2X [¥)X) (7b)
= [X — XOPIY) — XPY).
Therefore (7a) becomes
(AYVREY) + (AXR P2 [Y)
= (AYX)? + (AXXY) + m|¥). (7o)

4 If|¥') is an eigenstate of one of the two operators, say X, then
(AX)* =0, and (A Y)? necessarily diverges when A is a ¢ number.
Therefore the uncertainty product is of the indeterminate form
0 - co. We find in our subsequent analysis that such an indeterminate
quantity can be sometimes evaluated; see Appendix A.
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Finally, by taking matrix elements of the above with
(¥'|, we evaluate m, and discover that the coefficient
on the right-hand side is 2(AX)%(AY)?, which we
assume to be nonzero. Thus we obtain an Euler—
Lagrange (EL)-type equation for |¥) which must
be satisfied if U is to be a minimum:

# o B
[(AXY NN =0 ®

We call the states |'V') which solve (8) critical states.®
Evidently every critical state |'t") makes U(Y') station-
ary.

This simple equation provides the appropriate
generalization of the direct method to the case that
[X, Y]is a g number. For future reference we call this
the analytic method. Equation (8) is to be solved as an
eigenvalue equation with four free, real parameters,

viz.,
[(X o, Y=B 2} [¥)=0. (%)

a® b*

Once |¥) has been obtained from (9a), the four
parameters are determined self-consistently by setting®
o = (X), p=(Y),
@ = (X?) — (X)*, b*=(Y?) —(Y)’. (9b)
In general, since Eq. (9a) is an eigenvalue equation
with self-consistency conditions (9b), we expect to
obtain solutions only when a special (eigenvalue)
relation exists between the parameters. Nevertheless,
we may expect to obtain more than one solution,
since Eq. (8) serves equally well to determine other
stationary points of U: further minima, maxima, or
“points of inflection” of U. One must therefore
examine (AX)%2(AY)? = @2b* for the various critical
states, to determine which gives the smallest value.
(If it is not evident that a minimum has indeed been
attained, one might compute the second variation of
U to determine the nature of the stationary point.)
Having established a necessary condition on |¥)
for U(Y) to be a minimum, we may examine the direct
method critically to establish its precise relation to the

% Eigenstates of X and Y pose a special problem. For suppose
we take |¥") to be an eigenstate of X, and assume that (A Y)?
diverges so that the problem is nontrivial. Then Eq. (8) has
the indeterminate form 0/0 |¥') + ¥2/o0 [¥') — 2|¥) = 0. Evi-
dently an effective point of view is to ignore those solutions of (8)
which are eigenstates of X and Y, and evaluate U separately with
the eigenstates to determine whether these minimize U.

$ In the direct method, the parameters A and v need not be
evaluated separately since their value is set by the form of
Eq. (5a). Indeed the four conditions in (9b) are redundant
since the form of Eq. (9a) assures that one relation between the
parameters exists, viz.,

<X’>—201<X>+0t2+<Y’>—*2I3<Y>+I3’_2
b® -

a?
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analytic method. Suppose we set out to determine a
state|'V") by the direct method (regardless of the nature
of A). Then (6a) is valid, which may now be written as

I: X N »2Y? . yA
(AX)*  (Ax)y (Axy
The parameter y may be again evaluated by taking
matrix elements and remembering that (within the
direct method) (AX)*(AY)? = }(4)% Then [compare
(6b)],

} ¥ = 0. (10a)

(A) (AXR?
= = 4+ 10b
"7 ayy ((AY)Z) (100)
and (10a) becomes
Xxe V& 24
— == ¥y = 0. 10
[(AXY @1 <A>]l > (102)

Comparing this to (8), we see that the direct method
determines a critical state |'¥") which corresponds to a
stationary value of U(Y), if and only if |¥') is an
eigenstate of 4.

In conclusion we note that even when A4 is a ¢
number and the direct method is applicable, Eq. (5)
may not have a solution. Then U never achieves its
minimum of }A2. Nevertheless, it may achieve some
lowest value which is greater than }42; and the
analytic method may be used to determine the states
for which this occurs.

D. In order to exhibit the workings of our analytic
method, we solve the classic problem of minimizing
the position~-momentum uncertainty product

(Ax)*(Ap)2.

In obtaining this old result, we find all the critical
states for which (Ax)*(Ap)? is stationary.
According to (8) we must solve (5 = 1)

2 : 2

[(" — o, [/Dgjox — ] :|‘P'(x) = 2¥(x). (lla)
a b

The solution to (11a) can be found by comparison to

the Schrodinger equation for a harmonic oscillator.

Therefore (11a) possesses normalized solutions only

when

lab| = 3(2n + 1). (11b)
The normalized solutions are
an(x) = eiﬂwUn(x - d), (110)

where U, (x) is a normalized harmonic-oscillator
eigenfunction, with mass 4b?, stiffness constant 2/a?
and energy 2. The self-consistency requirements (9b)
set no further conditions beyond (11b), and all the
W,’s are critical states for (Ax)%(Ap)%. Evidently the
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minimum uncertainty product is }, which is attained
with the state ¥'y:

Wo(x) = [2m(Ax)T exp {=[(x — (x)Y(Ax)"1). (11d)
The fact that an oscillator ground-state wavefunction
minimizes the position-momentum uncertainty prod-
uct is well known, and has been considered to be a
fortuitous coincidence. It is seen from the present
analysis that this result is a natural consequence of
our analytic method. Moreover, we have obtained the
further knowledge that all the harmonic-oscillator
wavefunctions are critical states which make
(Ax)*(Ap)® stationary.

E. We continue with our discussion of the minimiza-
tion problem for uncertainty products by discussing
objects which are of a form more complicated than
(AX)*(AY)2 (Such uncertainty products have been
proposed by CN.)

If the commutator of X and Y is not a ¢ number,
it may be of consequence to consider an uncertainty
product of the form

(AXY@AY) _ UY)

Aar AR
By applying the variation principle, we immediately
obtain the necessary condition on |¥'), for which
U, (¥) is stationary:

X P 24
[t ars =0
AXF @AY} (4

This equation is the same as Eq. (10b) which follows
from the direct method. Indeed, that the direct
method is applicable, may be seen by reference to Eq.
3c).
According to that expression
1o RA)
4 PY) P
Thus when we arrange for Q and R to vanish, as is
done in the direct method, U, attains its minimum.
[We must of course examine separately the situation
if the direct method yields a solution for which
P¥)=10]

When the expression for the uncertainty product is
even more complicated, for example if it involves
the matrix elements of more than two operators, the
direct method, even if applicable, will not in general
yield solutions. The variation principle may neverthe-
less be used to give a (complicated) necessary condition.

UI. NUMBER-PHASE UNCERTAINTY
PRODUCTS

A. We now turn to the number—phase uncertainty
products proposed by CN. Following SG,! we

U, = (12a)

(12b)

Uu(¥)=- + (12¢)

ROMAN JACKIW

consider a harmonic oscillator described by creation
and annihilation operators a and a', respectively,
which obey [@,a'] = 1. The number operator
Nop = d'a has number states |n) as eigenvectors;
and aln)=ntln—1), a' n)=@+ D} |n+ 1),
a'a|n) = n|n). The eigenvectors of a are the coherent
states {a): @ |x) = « |«). They have the property that
N = (2| Nop o) = |a|* = (o N§, |a) — (o] Nop |a)? =
(AN)% In terms of number states, the coherent states
are given by

_ ety
o) = e ano(nl)%” (14)

Evidently each coherent state may be described by two
parameters: amplitude and phase of x. Thus we
frequently write [Ng) for |«) where o = N¥e®. To
define the sine and cosine operators, we define first
the number state raising and lowering operators E,:

E_= (Nop + D7},

E.=a" (Nop + )t = (E))'. (15a)
These satisfy
E ny=[nt1)n#0,
E 10)=|l), E_|0)=0,
410y =11) 10) (15b)
EE =1, EE =I-P
[E—’ E+] = Pa P |H> = 6110 |0>
The S and C operators then are defined by
=3}E_+E,], S=4%E_—E,, (l6a)
[Nop, S1 =iC, [Ng,,C]= —iS, [S,C]= 51- P.
i
(16b)

For coherent states, the matrix elements of C, S,
C2, S$* are given by
I, = (N¢| C|Ng) = I(N)cos ¢,
= (Ng| S|Ng) = I(N) sin ¢,

Ny
= g n'(n + ¥’ (17a)
= (N¢| C*INg)
=4 — e + }(cos® ¢ — sin® p)J(N),
= (Ng| S’ |N¢)
=1 — 1= — i(cos® ¢ — sin® ¢)J(N),
J(N) = Ne™¥ i A (17b)

Sont((n+ D(n + 20t

The functions I(N) and J(N) have the asymptotic
(large N) forms

1 1

INy~1l——, JIN)~1——. 17¢
(N) SN (N) N (17¢)
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Hence for large N,
I, ~cosgp, I, ~sing,
J, &~ sin? . (17d)
It is seen that the expressions involving § may be
obtained from those involving C by replacing ¢ by
im — @
The uncertainty relations proposed by CN are
U(Y) = (ANPACY/S)* > §
Us(¥) = (ANYY(ASPHC)Y® > .

2 2
U (W) = (AN)AAM >
(S)* + (O]
These relations have the virtues that (i) they represent
plausible generalizations of the imprecise statement
(AN*(Ag)? > §; (i) for highly excited coherent
states they closely approach their theoretical lower
limit } and remain small for moderate excitations.
The last uncertainty product is independent of ¢
when evaluated with coherent states.

B. It is demonstrably true that the coherent states
do not permit the U/’s to attain their theoretical lower
limit }. It may nevertheless be the case that no normal-
izable states exist for which U, = }; and the coherent
states give the lowest attainable minimum. We
establish that (i) the coherent states are not critical
states, viz., they do not make the uncertainty products
stationary; therefore a fortiori they do not minimize
the uncertainty products; and (ii) normalizable states
exist which allow some of the U;’s to reach their
theoretical lower limit of .

C. We first study U, . The critical states, which make
U, stationary, satisfy according to (12b)

— [Nop—<N>]2 [C_<C>]2_§ W 19
[ (ANY (ACY <s>}l - (19

Expanding |'¥') in number states |¥) = Y, a, |n), we
find that the coefficients a, must satisfy the recursion
relation

2 2
et (T B+ (Gt + 1+ #)an=0,

J, ~ cos? ¢,

(18)

1.2 2
Yape+ (‘—’;—— - ﬂ)am + (i’— (n—af +} + ﬂz)a,.

ib®
- (_ + ﬂ)an—l + ian—z =0 n 2 1’ a, = Os
4 (20a)
subject to the subsidiary conditions

1 =<‘}"I\F>’ o= <IFI Nopl‘F>a
p=YIClY), y=(¥| SI‘F>,
a* = (AN) = (¥| N3 |¥) — (200)
b* = (AC)* = (¥| C*|¥) — /32.

343
Whether the coherent states satisfy these equations

can be easily checked by setting |'Y') = |[Ng); viz.,
a, = e NNt )Y, o = a2 = N.

For simplicity we also assume ¢ = }=; viz.,, § = 0.
Then (20a) becomes

\/5 + 4—” N 4N +1)=0, (2la)
N? s b°N?
(n +2(n + D — ) p((n + Dn(n— )}
2
g SR frmsry
+4—b2£+1_0 (21b)
y (m?

Equations (21) are manifestly not satisfied; hence the
coherent states are not critical states, and do not
minimize the uncertainty product.

We may however demonstrate that for large N the
coherent states do satisfy (21b) approximately. For
large N, (AN)(AC)* ~ ¥(S)* ~ ¢ sin® ¢ = }; thus
4b* = 4(AC)Y: ~ (S)*/(AN)*  ~ 1/N;and y ~sin ¢ =
1 [see (17)]. Also for large N the most important
number states |n), contributing to the coherent state
|Ng), are those with n ~ N; since for these values of n,
N¥(n!)~* assumes its maximum. Therefore for large
N and n~ N the left-hand side of (21b) becomes
O(1/N), and (21b) is approximately satisfied. This
argument cannot be given when (C) = f # 0.

It is evident that the analysis of U, proceeds in the
same fashion towards the same conclusion, except
that the condition (C) = 0is now replaced by (S) = 0.

D. States that do minimize the uncertainty product
U, and allow it to achieve its theoretical lower limit of }
may be easily constructed (under certain restrictions).
The discussion in Sec. IIE shows that we may use the
direct method to determine these states. Accordingly
we wish to solve

(Nop + iyO)|¥) = A1),

W ¥y =1. (22)

For simplicity, we again confine ourselves to the case
(¥| C|¥) =10. This makes A real and equal to
(¥| Nop |¥). Expanding in number states leads to the
recursion relation

(A — na, = i@, + a,.1),

4, =0 (23a)

To put this in a more transparent form, we define
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a, = (—i)"b,; then the b,’s satisfy

(2/}/)(71 - A’)bn = (bn—l - bn—{—l)a
b, =0.

This recursion relation is well known.” We do not
examine it in detail as it is sufficient for our purposes
to extract one solution. A solution to (23b) is

by =vI,_,(7), (242)

where I (Z) is a modified Bessel function of the first
kind of order u.! We also require I, ,(y) =0.
(This forces A to satisfy 2k + 1 > 4 > 2k, where
k=0,1,---.) The multiplicative constant v is
obtained from the normalization condition

(23b)

|”|22013;—A(7) =1 (24b)
In Appendix B we prove that the series in (24b)
converges, that (¥'| C|¥) =0, and (¥'|S|V) # 0.
Thus the desired solution of (22) for which U, = }, is

%) = » 3 (=)L) I,

A= (Nop),
(ANY(ACY(S)* = 1.

Unfortunately these states do not seem to have any
physical significance.

The recursion relation (23b) is also solved by the
number states. These however do not minimize U,
as we demonstrate explicitly in Appendix A.

It is clear that states which allow U, to reach }
can also be constructed.

E. We now examine the symmetric uncertainty
product U;. We first show that no states exist for
which U, attains its minimum value of }. According
to (3a) we have

(ANPAC): = §(8)* + 101(Y) + Ry(Y),
(ANPY(AS)* = KO + 10:(T) + Ry(Y).
Therefore for U, to be 1 we must have
0= U, — 1= [+ (CPINHEOY)
+ 10:(F) + R(Y) + R(1)]. (26b)

Since each term on the right-hand side is positive
semidefinite, Q,, and R, , must vanish separately,
which according to (5b) requires
Nop + iy, C1IY) = 4, '),
[Nop + iyoSHY) = 2, |'¥),

(25)

(26a)

(26¢)

7 G. N. Watson, A Treatise on the Theory of Bessel Functions
(Cambridge University Press, London, 1952), p. 294.
8 Reference 7, p. 172.
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where y, and y, are real and nonzero. Evidently the

commutator of the operators appearing on the left-

hand side of (26c) must annihilate the state |'¥).

This sets the condition
[-]—s+ic+ip}|\1f>=o. (26d)

Y2 N 2
Equation (26¢c) may be used again to evaluate S|¥)
and C|¥). Therefore (26d) becomes

i’ (Nop — 2p) + 73 (Nop — 43) + $P][¥) = 0.
(26¢)
Expanding |'¥") in number states yields the conditions

['—%_2’—:4‘1](70:0,
novi 2 (26f)

i%(n — &) + y3°(n — A)la, = 0.

These recursion relations are solved only by the
number state i), where 1, =1, = 1 = integer;
(C) = (S) = 0. We demonstrate in Appendix A that
the number states do not minimize Uj;.

Thus the direct method does not yield any solutions,
and we are led to consider U, by the analytic method.
The procedure to follow is the same as for U;. The
variation principle gives an EL equation which
represents a necessary condition which must be
satisfied if U, is to be minimized. With this condition,
it can easily be verified that the coherent states are not
critical states and do not minimize U,. Again it is
found that, for large N, the coherent states approxi-
mately satisfy the necessary condition, but now no
restriction is set on ¢. The EL equation is too compli-
cated to serve to determine the states that do minimize
U;; hence we do not present the details of this
calculation. (The recursion relation which follows
from the EL equation actually is elementary, but the
imposition of the subsidiary conditions is complicated.
In any case the solution, if it exists, surely has no
physical significance.)

Since the first variation of U, does not vanish for
coherent states, there exist states, arbitrarily close to
the coherent states, for which U, is smaller than it is
when evaluated with coherent states. For example,
with the state |¥,) = o[|Ng) + ee~¥V |0)], where
is a normalization factor, € a positive small parameter,
and N large, Uy(¥)) is smaller by an amount 2eN2e~Y
than with the coherent state of the same excitation.

IV. SINE-COSINE UNCERTAINTY
PRODUCT

Since $ and C do not commute, limitations exist
on the simultaneous measurement of these two quan-
tities. However in the classical limit these limitations
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must disappear. Thus we are led to consider the
uncertainty product

U, = (ASR(AC):. @7

In their original discussion of the S and C operators,
SG demonstrated explicitly that there exist wunnor-
malizable states

10y = 3 ¢ n) (28)

n=0
for which (AS)? =0 = (AC)?, hence U, = 0. Car-
ruthers and Nieto have shown that for the normaliz-
able coherent states U, goes rapidly to zero for large
N, and to % for small N.

We now wish to use our analytic method to investi-
gate whether there exist normalizable states which
minimize U,, and whether the coherent states are
critical states for U,. We find that no normalizable
critical states exist.

To establish this result, we use (8d)

S* ¢?
[ : + 2
(AS)*  (AQO)
For simplicity we confine ourselves to the sym-

metric case
(8) = (0),

'2J ¥)=0.  (292)

(8%) = (C*).
Thus we need to solve
(S — w)¥a® + (C — a)*a* — 2]|¥') =0, (29b)
with the subsidiary conditions
Pt Ae TS e
Equation (29b) may be simplified into
[0 — 4P — uel"E, — ue t7E 1 |¥) = 0, (29d)
where ~
Z ; ;/:i‘:,uz — 242 (29¢)

Expanding in number states gives the recursions
(v = Pa, — ueting, =0, (30a)
va, —u(et"a, 4+ eta )=0, n>1. (30b)
This is obviously not satisfied by the coherent states,

except approximately for large N and n~ N. The
general solution of (30b) is given by

ay= A 4 By, (Bla)
L. (31b)
u p

We assume v 5 0. If [¥') is to be normalizable, we

345

must have Y, |a,|* = 1; therefore A4 is zero if [p| > 1,
and B is zero if |p| < 1. Taking the latter case and
imposing (30a) and (31b) determines p = 2u and sets
v = } 4+ 2u% The normalization can now be deter-
mined, and we obtain as a solution

W) = (1 — 4n?)E S e TOmnyn |y, 4u® < 1. (32a)

n=0

Imposing now the subsidiary condition
uN2=a = (| C¥) = V2u (32b)

gives u = 0 and no nontrivial normalizable solution is
obtained.

Similarly when 4u? > 1, no normalizable solution
is obtained. Therefore we conclude that U, cannot be
minimized by normalizable states; and only the
unnormalizable states (28) minimize U,. For these
states (Nop) diverges and they obviously represent the
high excitation limit. [Such states cannot be deter-
mined by the EL equation (29d) since that equation
was derived under the assumption that the solutions
are normalizable.]

V. SUMMARY

In conclusion, we summarize our results. We have
developed new variational techniques for the deter-
mination of states that minimize the uncertainty
product of operators. By the use of these techniques
we have demonstrated that the coherent states do not
minimize the various uncertainty relations which can
be given for number and phase operators. Although
normalizable states do exist that minimize some of
the number-phase uncertainty products, we do not
believe that these states have any physical significance
as they are strongly dependent on the specific form
of the uncertainty product. Moreover, the coherent
states do not even make any of the uncertainty
products stationary. Thus the coherent states have no
unique relevance to the classical limit of the phase
operators. Indeed any state, which, when expanded
in number states |n), has expansion coefficients a,,,
which for large (Nop) are strongly peaked and con-
stant at n~ (Nop), serves to minimize approxi-
mately the uncertainty products. An example of such
a state was given at the end of Sec. IIIE.

APPENDIX A

Throughout our analysis we have ignored the fact
that the number states are solutions to some of the
various equations we studied. We examine here
whether these eigenstates of Nop minimize the various
uncertainty products U,, U,, U, [Eq. (18)].

For number states, of course, (AN)2 =0, (S)? =
0 =(C)?, while (AS)2 3 0 5% (AC)2 Therefore the
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uncertainty products have the indeterminate form 0/0.
To obtain the value for this we proceed as follows.
Consider the excited coherent state

|Non) = (E,)" [Ng).

These states are normalized and the number states
[n) are reached as N — 0 in these states. We therefore
evaluate all matrix elements with the states |Nen)
and then let N —» 0.

The relevant matrix elements are easily evaluated.
One finds

(Nepnl Nop IN(pn> =N 4 n,
(Nen| Ngp INgn) = (N + n)* + N,
(Ngn| T [Ngn) = (No| T |[Ng),

(A1)

(A2)

where T is any of the operators S, $%, C, C% From

these it follows that
U(Ngn) = Uy(Ng) (A3)
and

Uy n) = lim U,(Ng). (Ad)
N-0

According to the definitions of the U;’s [Eq. (18)]
and using the formulas (17) for the matrix elements
of the S and C operators between coherent states,
we have

U(Ng)
= N[I*(N)sin® ] *
X[} — te™ + }(cos® ¢ — sin® )
x J(N) — I*(N) cos?® ¢},
Uy(Ng) = U,(3Nm — @),
Uy(Ng) = U,(}Nm).
For small N, I2 ~ N and J ~ N/4/2. Therefore
Uy(n) = 1/4sin? ¢,
U,(n) = 1/4 cos® ¢,
Us(n) = .
It is seen that U,(Nen) and U,(Nen) do not approach

(A5)

(AS6)

ROMAN JACKIW

a unique limit, viz., a limit independent of ¢; therefore
U,(n) and U,(n) do not exist. For U, we conclude that
either Us(n) = §, or if there exist other ways of
approaching the number states, leading to a different
value of Us(n), the limit does not exist. In any case,
the number states do not minimize the uncertainty
products.

APPENDIX B
We wish to prove that the state '),

%) = v 3 (=)L) I, (BY)
is normalizable, viz.,
2 < w (B2)

For large enough n, n — 4is positive and the following
integral representation for /, is valid®:

=~__(§_Z_)_"____ ! NS JES T
1(2) 77%1’(/1 s _1(1 T Sl el [
Reu > —4. (B3)
Evidently
2 ¥
1) S e MO
n>21-—1% (B4

where M is positive and independent of n and A.
Therefore the series (B2) converges.

We also need to show that (V| C|¥') = 0. This is
readily established from the formulas (16a) and (B1).

Finally we establish that (V'] S|¥') ¢ 0. Recall that
S is proportional to the commutator of Nop and C.
According to the general discussion of Sec. IIC, we
know that the expectation value of the commutator
is proportional to y(AC)? Since y is nonzero, we may
prove that (S) is nonzero by showing that (AC)? does
not vanish. However (AC) = (C?) since (C) =0,
But (C?) is nonzero since the operator C manifestly
does annihilate |\¥").
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