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In this paper we give a more compact representation of the intelligent spin states defined by Aragone,
Guerri, Salamd, and Tani. Using this new representation, we discuss the differences between minimum
uncertainty states, coherent Bloch spin states and intelligent states. The evolution of these states under a
particular time dependent Hamiltonian is studied, showing the relevance of the noncompact subgroup K of
the Lorentz group. Finally we analyze the radiative properties connected with the intelligent states for a
pointlike medium. The main results are: (I) they have a nonvanishing dipole moment (as the Bloch states)
and (II) the proper intelligent states give a spontaneous emission intensity which is different from the one

provided by the Bloch states.

1. INTRODUCTION

In a recent paper, Aragone, Guerri, Salamd and Tani, !
constructed the intelligent spin states as those which sat-
isfy the Heisenberg equality for the angular momentum
operators. Many questions of physical interest were
not discussed there,

The purpose of this work is threefold: (a) to give a
clear distinction between intelligent states, minimum
uncertainty states, and Bloch states; (b) to show a more
compact representation of intelligent states; and {(c) to
determine the time evolution and some radiative proper-
ties of two different systems initially set in an intelli-
gent state,

This article is organized as follows: In the next sec-
tion we give a more compact expression for the intelli-
gent states than the original, and we discuss the con-
nection between intelligent states and coherent spin
states.?~! We will show the difference between the 2j +1
intelligent states and the 2j + 1 states obtained by apply-
ing the two-parameter rotation R(7), defined by Arecchi,
Courtens, Gilmore, and Thomas (ACGT),? to the stan-
dard Wigner states [j, m).

Section 3 is devoted to analyzing the difference between
minimum uncertainty states, atomic coherent spin states,
and intelligent states. We calculate the expectation val-
ues of J,, J,, J, and their quadratic deviations for in-
telligent states, using the technique of generating func-
tionals, whose details are presented in Appendix A.

In Sec. 4 we present the explicit evolution of a non-
relativistic high spin system, initially set in an intelli-
gent state, immersed in a magnetic atmosphere,

We also estimate the macroscopic dipole and emis-
sion rates of a pointlike laser.

In the last section we make some comments and
remarks.

2. COHERENT SPIN STATES AND INTELLIGENT
STATES

The SU(2) algebra is defined by the usual commutation
relations,

[Ji’Jj]zieiijk: i,j,£=1,2,3,

or, in terms of the ladder operators J,=J, +ied,
(e =+1,-1) and J;, by

(1a)
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[J, I ]=2eT5, [Jy,d.]=eJ,. (1b)

The (2j + 1)-dimensional Hilbert space spanned by the
eigenvectors of J and J; (labeled by |7, m) or by Im))
i, m)=3G +Dj,md, J5lj,m)=mlj, m), 2)
is denoted by H;.

A useful formula for computation is
2] -1/2

G +em)! |m)= Jivem| — ). (3)

jtem

The ladder operators are useful in order to construct!
the atomic coherent spin states or Bloch states |7),

D=+ |7 [ exp(ra,) |- j)
= exp(rJ,) exp[In(1 + |7 [})J5] exp(- T*J_|- 7)
=R(7)|- 5, “

where T=tan36 exp(- ¢ @), 6<[0,21). R(7) represents a
rotation through an angle 6 about the axis a=sing &,
— cos@eé,.

Two different Bloch states are not necessarily ortho-
gonal. In fact their inner product is

(Tl =+ |7 [H7 @ + [73 |71 +TFT,)%, (5)

The expression of the atomic coherent spin given in
Eq. (4) is analogous to that for Glauber states, [z)
=N(z) exp(za +)10), where the operator exp(za*) is ap-
plied to the ground state of the harmonic oscillator. 58

The Glauber states satisfy the Heisenberg equality
Ax Ap =13, Therefore, one could also enquire whether
the states |7) satisfy the Heisenberg equality for the
SU(2) algebra,

AJE AJE = 5(J5)? 6)

or, what are all the states |w) which verify Eq. (6)?

For a careful analysis of Eq. (6), let us define two
homogeneous functionals of zeroth order, the uncertain-
ty functional I(3),

1) = W] adt [0 | add [ 9)p |9)2, (7a)
and the half-commutator squared functional C(y),

C@) =47 <[y, L] [0 12 [d2, (7b)
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In terms of these functionals the Heisenberg equality
looks like

I@)=C@). (6")

We shall refer to |u) as a minimum (maximum, sta-
tionary) uncertainty state if I()) has a local minimum
(maximum, stationary point) at |¥)= lu). Moreover,
lw) shall be called an intelligent state if I{w) =C{w).

Therefore, in principle we have three different kind
of states related to the angular momentum algebra: the
Bloch states |7), the intelligent states |w), and the
minimum uncertainty states {u).

1t is worthwhile to stress that, in the case of the
Heisenberg algebra {x,p, [x,p]:i}, the corresponding
functional C(¥) =41 [[x,p]|¥)* (@1¥)™? has a constant
value: 3. Therefore, any intelligent state of this algebra
must be 2 minimum uncertainty state too.

However, this property does not necessarily hold for
other algebras where C(¥) is not a constant number, as
in the case of SU(2).

1t is a well established property of quantum mecha-
nics? that all the intelligent spin states are given by the
set of all the siates that satisfy the linear equation,

Ty [0)= Iy — iady) [w) = () ~ ialdy),) |wy=w jw),

where a is a real number. Defining y .= il-ca), e=z1,
J, can also be written as a linear combination of the
ladder operators,

(8a)

Ja = 7+J+ +yd.= YeJe’ (8b)

leading to the explicit expression of the intelligent spin
states shown in Ref. 1. With the present notation they
can be written as

N
|y (Tg)) :dNZ;(?])(Zj —D(=27,d) T, 0<N<2j,
1=0

)
Ti ’:Y;V:!; Wy = 27/*7-;1(.7. - N)v

where @y is a normalizing factor which shall be deter-
mined later on.

We note that for a given 7, we have 2j +1 different
eigenvalues wy, as we see from the explicit form of w.
Therefore, the set {lwy(T,))} is for a given a, lal#1,
a basis of H,,*

It is also worthwhile to point out that, due to the fact
that @ must be real (therefore 'y,,yjl is real too), T,
== (y,/v.)'"? can only be real or pure imaginary.®

However, we could think of enlarging the definition
(9) for lwy(T)) to any complex number without giving
raise to any mathematical inconsistency. In this case one
has to stress that for complex T not on the real or im-
aginary axis, [lwy(T)) does not represent a solution of
the Heisenberg equation anymore. We shall call these
states the generalized intelligent states.

There are two special cases of N, the extremes 0
and 2j. In fact lwy(7)) = [T) and (it shall be shown in this
section) lwy,(T)) =i~ 7). Actually these are the simpler
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cases of the general law relating intelligent states cor-
responding to opposite complex numbers,

e (T)) = |wyy(1))), Ny+N,=2j, T(+7,=0. (10)
This relation is easily seen after having established
the value of the inner product {pl le(-r)> =(wylp) lwy (T

given in Appendix A, ' '

In order to perform calculations of physical interest,
it is convenient to have a simpler expression than Eq.
(9) to describe the intelligent states. Fortunately this
can be done just by ordinary straightforward algebra.
It turns out that [wy(7)) can be written as

[0 (T)) =@, Y1303 % exp(t,d,) | - 7),

n=0,...,2, (11)
where

a,=ayN'(1 +[7{3)~, n, ¥, 7, given by

n=2j-N, Yf)=f(1),

@)@)=27f/25, =112, (12)

and the corresponding eigenvalue w, is given by w,
=2y,71(j —n). Taking into account definition (4} and in-
troducing the auxiliary polynomials p,;{y,z, I71),

pi0,2,T)= bz + 7T - 2)(z - 2)), (13)
one can write down the intelligent states as
|wa(7)) = a,¥ 13} exp(r,J.) exp(- 2lnyJy) |- 7
=a,¥133p,00,9,7)|7,), (14a)

where the normalizing factor g, is shown to be (see Ap-
pendix A)

an=1Z Y0532 pas (9,2, 7)1 /2= (p7)~!/?

and 1'ry) means the Bloch state corresponding to the com-
plex number 7(1 -2y =1,

(14b)

We note that in the expression given in Eq. (14a) for
the intelligent spin states the operator Y,3] occurs.
Therefore, one has to know the behavior of p,;{y,y, T)IT,)
in a neighborhood of y =1, in order to obtain the cor-
responding derivatives.

States having the structure p,;(,y, 7)l7,) = exp(7,J,)
x exp(— 2lnyJs) | —j) are not atomic coherent, since the
group parameters 7,, ¥ do not verify the condition for
a Bloch-type rotation R(1) (¢ #1 + [7,1%).

However, the structure (14a) proves to be very useful
in order to deduce many properties of intelligent states
from the corresponding properties of the associated
Bloch states 7).

One can also ask if an intelligent state lw (7)) coin-
cides with some Bloch state {u). In order to answer this
question, one can prove that!!

lw ()= L) Zn=0, T=-p or n=2j, T=u, (15)
which shows that proper intelligent states (1w,(7)),
n+0, 27) are not Bloch states, but a refinement of them.

Moreover, since for each 7 we have 2j+1 different
intelligent states, it is natural to enquire whether they
could be obtained through some operation applied to the
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Wigner basis |m). In other words: Are the 2j +1 states
IT,m)=R(T)\m) m=—-j+1,...,5-1,7) intelligent?

Straightforward calculation yields (notice that 7
=tan6 exp(~ iln/2), 1 integer)

Ja ‘T) m>=—msin0\7,m>+0059(7' +m)1/2

X@G-m+1)2 |7, m-1). (18)

The second term in the right-hand side shows that |7, m)
is not an eigenvector of J,, unless cosé({j +m)=0.

As in general |[7|#1, the only possibility we are left
with is m = - j, which means that in the set {|Tm)}, only
T, -4)=17) is intelligent. In the particular case where
cosf=0 (B:w/z + k7, k integer), it is immediate to see
that such a situation corresponds to a =0, =, i.e., J4
=J; or J,, respectively. In that case it is easy to under-
stand why |T=exp(- il7/2), m) is an eigenstate of J; (or
Jy): R(T =exp(- ilm/2) corresponds to 7/2 rotations about
Jy (or Jy), therefore the states |7)=exp(- iln/2), m) are
nothing else but the Wigner basis with respect to the
x (or y) axis,

3. EXPECTATION VALUES FOR INTELLIGENT
STATES AND MINIMUM UNCERTAINTY STATES

In order to define calculations of physical quantities
for systems prepared in an intelligent state, one has to
develop a suitable technique to handle the corresponding
matrix elements. As ACGT have shown for the Bloch
states, the technique of the generating functions has
been proved to be very useful. In Appendix A we present
with some details how the technique due to ACGT is ex-
tended to deal with intelligent spin states.

If we define the operators (:)"™ as

3™ gm

=Y\ Z 30, 2)= | o om0, 2) ) an
ayl 582 y=2=1

one finds (see Appendix A) for the expectation values of
J; for a system in an intelligent state,
() [ I [, (7))

= e =2 ReT[y(z = 2)py;4 00, 2, T3]
@0,(1) |y |, (7))

= Jodnr == 2 Im7{y (2 = 2)pyy1 (v, 2, I OF)™
(7} |Jy [0n(T))

= e =L (TT* @ = 2)(z = 2) = 23)py;4 ™ OT) !
Further on, by taking second-order derivatives of
the generating function X,, defined in Eq. (A8), we
evaluate the quadratic deviations {AJ?),,,

AT, =52 - DT+ Ty (2 - 2)%py, "3
+il 02 + 2§12z (y - 2)(z - 2))pys., " (BFD!
+ 5T - 2)(z - 2) = 23)pg I
- 4% (Rem){ly (& = 2)py;u " PO 2,

(BTDr == 3j(25 = 1)(7 + T [p2(z = 2%y, 1" 5]
+5l@%% +2§TT¥2(y - 2)(z = 2))py,, DY
+5l(y - 2)(z = 2)7T* ~ 29) Py, I (7))

- 4 Im7)Hly (z - 2)Py,; " P pIN2,

(18)

(19)
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BID =~ 45H[29P0; 4 "R 05D + 2i{2yp 5. I™
X ()™ +2§(2) ~ 1)y %y, 05 ™.

In a similar way, the mean values of monomials of
the type J}'}J‘,‘%J‘,‘g can also be calculated by an appropriate
number of derivatives of the generating functions, one
of which is X ,(apBy), defined in Eq. (A8).

Once we have obtained the values of {(AJ? ,),, and
(J5)us We are in a position to discuss more precisely
what are the differences between minimum uncertainty
states 1), and intelligent states |w) of the SU(2) alge-
bra. As we know this algebra has commutators which
are not numbers, it is a good candidate to find out ex-
plicit examples of intelligent states which are not mini-
mum uncertainty states.

Actually, in order to determine all the minimum un-
certainty states, one should have to parametrize H; and
thereafter calculate I(y) and C(¥) for this H; parametri-
zation. Proceeding in that way, one obtains two functions
depending upon 45 + 1 independent real parameters and
it is a standard task to find both the local minimums of
I(¥) and the subvariety where I(y)=C(3).

If we restrict ourselves to a subset B of H;, we can
explore what happens on B, Evidently, any intelligent
state that belongs to B is an intelligent state in H,. On
the contrary, that lug) is a minimum uncertainty state
on B does not necessarily imply that lug) shall be a mi-
nimum uncertainty state on the large variety H,.

For B={I7), T=tan36 exp(- i)}, the uncertainty func-
tional I(y) has, on B, the vaiue!®

I(7) =1j*(1 - sin*6 sin®@)(1 — sin’f cos®y), (20)

while for C(y), we have

C(1) =472 cos?6. (21)

Due to the simplicity of both I(1) and C(7), it is im-
mediate to solve the Heisenberg equation I(7) = C(7).
That gives

§2sin’9 sin’ 20 =0, (22)

or equivalently
6=0, ¢ arbitrary, 6 arbitrary, ¢ =n7/2 (n integer).

Because of the degeneracy at the origin in the polar
representation (8, ¢) of the complex plane, the solution
given in Eq. (22) is exactly the set of the two axes of the
complex plane. That corresponds to the fact already
mentioned: The only intelligent Bloch states are those
contained in the two axes. Of course, as we have shown
before, there are intelligent states which are not Bloch
states.

In connection with the possible minimum uncertainty
states located on B, one has to find the local minimums
of I(7). I(7) has nine stationary points T,

T, =tan(mn/4) exp(— in1/4), m=0,1,
n=0,1,...,6,1. (23)

It is straightforward to verify that 7,=0 gives a maxi-
mum of I(7), and that 7 = exp(~ inn/2) give the four mini-
mums while the remaining four points Tszexp[— i(n/4
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+nm/2)] give saddle points of I(T) in the subset B. That
means that only the four points of B(T, = exp(- in7/2))
can be minimum uncertainty states on H;.

Nevertheless we have a lot of intelligent states de-
fined on B (T any real or pure imaginary number) which
shall proceed to be intelligent states when we enlarge
the calculations to the whole H,.

4. DYNAMICAL PROPERTIES OF THE INTELLIGENT
STATES

The first situation that we want to consider is the time
evolution of a nonrelativistic spin j system (of magnetic
moment ¥), in a magnetic environment B(t) of the type

considered by Gilmore!?:

J

cos?y exp(iw_t) + sin®y exp(- iw, )
Uft) :{

i5in2y sinw,t exp(iw,t)

where w,, w_., and ¥ are given by

WS wpEw;, wy=[YBI+(¥B, +w)*]t,

sin2y=yB,w;!, cos2y=(¥B, +w Jw;l. 26)

Let us assume that our system has been initially pre-
pared in an intelligent state [w,(7)). Therefore, in any
other subsequent instant {, the system shall be in a cer-
tain state |w,(t, 7)) determined by the evaluation opera-
tor U(t); namely, lw,(t,7))=U{) w,(T)). We want to in-
vestigate whether |w,(f, T)) is an intelligent state or, at
least, how close to an intelligent state it is while it
evolves. We know, after ACGT, that a Bloch state re-
mains a Bloch state along its evolutions under the
Hamiltonian (25).

Moreover, as both lwy(7)) and lw,,(7)) are Bloch
states, it might happen that any proper intelligent state
could evolve remaining in the subset of the intelligent
states too.

In order to give an answer to this question, let us
briefly mention some useful facts concerning SU(2) and
lw,(T)), as has been given in Eq. (14a).

The first property we want to point out concerns the
structure of lw,(7)) itself; lw,(7)) can be written

lu7n(7)> :anyla:k(yv T) {_j>,

k(y, T) = exp(TyJ,) exp(- J31ny2), (27

where k(y, 7) belongs to SL(2,C),* the analytic continua-
tion of SU(2). * In the two-dimensional representation of
SL(2,C), k(y,7) has the form

k@, T) =exp(T4],) exp(- (Iny?)Jy)

{1 Ty} {y" } {y‘i T(v—Z)}
= -1 LY = . y ’
showing that it belongs to the well-known four param-
eter subgroup K of SL(2,C), ® as reviewed in Appendix
B. We prove in this appendix that for y #1, k(y, T) con-

tains a Lorentz boost and, therefore, k(y,7) does not
represent a proper rotation.

(28)
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B(t)=2B,(cos2w,tx + sin2wty) + 2B,z (24)
where 2B,z is a constant magnetic field along a fixed
direction and B is the strength of a perpendicular field
of proper frequency 2w,.

The corresponding time-dependent Hamiltonian is

H({t)=-1yJ - B(t) = - Iy(B, exp(~ 2iw ),

+ By exp(2iwl)J. + 2B,J;), (25)
with J represented in the (2j +1)-dimensional space H;.
By going to the two-dimensional representation of SU(2),
Gilmore has evaluated the time evolution operator U(t)
which satisfies the Schrodinger equation #U = HU,

i sin2y sinwyt exp (- twqf)

cos®P exp(— iw_t) + sin®y exp(iw+t)}, (26a)

The operator U(t)k(v, 7)=1(¢, v, T) has also been ex-
plicitly evaluated in Appendix B, Eq. (B8). This allows
us to write the state lw,(t, 7)) as follows:

lwa(t, 7)) = an (1Y 2212 explyi'd,) | - i), (29a)

where
Zzz [Ty = 2) cos®y +v siny cosy] expliw_t)
+[7(y — 2) sin®y — v siny cosy] exp(— iw,t),
[,=[r(y — 2) sing cosy +v sin®*p] exp(iw,t)

+[v cos®p— T(y — 2) siny cosy] exp(— iw_f).

Although the structure of the state lw,(t, 7)) seems
complicated, it is proved in Appendix B that this state
becomes, up to a phase factor, an intelligent state if the
transverse magnetic field vanishes, i.e., B, =0. Only
in this case the evolution of an intelligent state of order
n determined by the complex number 7 is a generalized
intelligent state, of the same order n, corresponding to
the complex {-dependent number 7' =7 exp(2iyB,¢). If
n =0 we recover the result of ACGT: lwy(t, 7)) = exp(2i
xargl,)11,I;1). That is, the evolution of a Bloch state
keeps being a Bloch state, up to a phase factor.

The second situation we want to treat here is the rel-
evance of the intelligent states in connection with the
pointlike laser, '® either with a semiclassical or a fully
quantized representation of the laser field.

By a semiclassical pointlike laser we mean a collec-
tion of identical atoms, each with two etffective energy
levels (with Zw the energy gap) interacting with a classi-
cal field E(t) = 2Re{E, exp(iwt)}, which has the resonant
mode of frequency w.

The Hamiltonian corresponding to this system is,
following ACGT,

H=H,+H,;=hwd;- (p*E}¥)J, exp(- i wt)

— (p* - Eg)J_expliwt), (30)
where the vector p is the complex dipole moment as-
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sociated to each atom giving rise to the total dipole
moment

D=pJ, +p*d.. (31)

For a system of Nj atoms, the cooperation number j
must satisfy the inequality

j <3N,. (32)

We are assuming either that p verifies p-E;=0
=p* . E} or, if this selection rule does not apply, that
we are working in the rotating wave approximation.

If one neglects the interaction term H,p between mat-
ter and the electromagnetic field, namely H, =0 in Eq.
(30), it is possible to give an estimate of the expectation
value of D, For the system initially in an intelligent
state |w,(7)), the state lw,(f, 7)) becomes lw,(¢, 7))
= exp(- fjwt) lw, (T exp(— ijwt))). Therefore,

@a(t, ) |D [, (¢, 7))
=P Inct) + P*U (1)
= 2§(pT* exp(iwt) + p*T exp(— iwt))
X[y~ 2)py;u 5N, (33)
This result is a refinement of the corresponding one
for the Bloch state, which is reobtained here by taking
n =0, (It is worthwhile to remind the reader that for the

Wigner—Dicke states the expectation value of D
vanishes. )

As the macroscopic dipole of the system does not
vanish, there exists a nonvanishing classical radiation
intensity I, generated by this oscillating dipole, which
in the wave zone is

Io=Iy- 4217y (z - 2)p,,, " P72 (34)
Introducing the fully quantized Hamiltonian
H=H,+Hp+H,p=liwds +Hwa‘a + yal, +ya*J., (35)

we can calculate the emission rate for the pointlike
laser, 7

The spontaneous emission intensity can be calculated
for an initial intelligent state lw, (7)), in a way similar
to what ACGT did for this model,

m/2< <7,
Tsdor < Idir < Ugdor (G23),

a1 22
Tyor =~ 2j 086, Ty)1s=~ 2j oS0 [1 +{2-77) sin’f

2j cos?f +sin’

((G= D = 2)(2 = 3) cos*8+ 2(j - 1)(4j - 5) cos?6 + (5] — 4)]

1:”=Ioijl<m || (1)) |2

= Iy, (1) [T J. [10,(T))
:IG<J-J+>?IT + 210<J3>m"

The matrix elements occurring in this relation are
easily evaluated by means of the generating function
X 4la,B,7), given by Eq. (A9),

Lr=12itm*{(2j - 1)yz(y - 2)(z - 2)pgsu™
X @I+ - 2)(z - 2)py, "), (36b)

an expression which reduces for n=0 to the results founc
by ACGT for Bloch states.

(36a)

In the case of a Dicke—Wigner initial state |m), the
spontaneous emission intensity is I =I,(j +m)(j - m +1).
In order to compare the spontaneous emission intensi-
ties between intelligent states and Dicke—Wigner states
we have to evaluate I for a Dicke—Wigner state having
the same energy expectation value that l,(7)).!® There-
fore, introducing m ={Jy),, in I, we get

U et g0 =10 %1 = (v2P2;.)" (B3]

(37
X[1+2jzpy;) "5 ] # I3,

A similar calculation for the stimulated intensity Pt
leads to:

Ba=1,23{[m | w, () |2~ [ |7, |w (7)) |2}

=2+ 1y (38)

Consequently, using the value given in Eq. (18) of
J3)ur We have

I::.:IO . 2][1 - Z(yz[)y-l)"" g',')'l] :Isbt7 (39)

which is identical to the stimulated intensity emitted for
an initial Dicke state with quantum number m = {J3),.

Just for completeness, one can explicitly calculate
U3dors )i and Jg)y,. It happens that, for j= 3, the
three values decrease for 0 <6< 77/2, and increase for

(40a)

(40p)

39, =—2 cosb

However, as we have not been able to proceed a step
further we are not allowed to claim a general property
from Eqgs. (40). The only statement we are making is
that the stimulated emission ‘intensity (and also the en-
ergy expectation value) of the proper intelligent states
(n=1,2) is greater than the stimulated emission inten-
sity arising from the Bloch state corresponding to the
same value of the parameter 7.
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[(7-D(2 -3V cos*0+4(j - 1) cos?0+1]

(40c)

[

The last point we want to mention concerning the dif-
ferent behavior of intelligent states in comparison with
Bloch states is the following: Suppose we have initially
prepared a system of spin j in an intelligent state lw, (1))
and we want to know what is the probability that, under
the magnetic Hamiltonian (25), the system could be found
in >0 in a Wigner state [m). Making use of the results
of Appendices A and B, we obtain the transition
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probabilities

et = 1 a7 [P = 1 Va2 (7 )

{5

(115 29)=(0,0)

11 kio n=1 nel
a21a2 204 102( 2

X Cgom-lic:zkj#m-ndzci-m-m-llcrj-m-m-lz

jAm\ fi+m\fj-m\/i-m
W L Nn-t\n-1,) ° (412)
where a; and ¢;, 1=2,4 are
a,= exp(— iw )| T cosw,yt +1 sinw,(T cos2y + sin2y)],
a, = expliwf)[coswyt + i sinw,t (T sin2y — cos2y)],
(41b)

o= expl(~iw ) (T ~ 2) coswyt + i sinwyt ((T — 2)cos2y
+ sin2y)],
¢, = expliw f)[cosw,t — i sinwyt (T sin2¢ + cos2y)].,

In order to see how a pure intelligent state behaves,
one can take a particular case of Eqs. (41). For in-
stance, let us choose |m)=[-7j). Making use of the
above result, it turns out that (7 =tanz8 exp(+inm/2))

r=Lin=1=d _ (9 cos% + sin’e)!

Poym-i-5

1 + sinw,f « [sin®2¢(% - 1) — 7 sindy]
1 + sinfw,t « [sin?29(1? = 1) + 7 sindy]’

(42)

This ratio I' is finite for any ¢, 7, and { unless 7
takes the value T, =- cotan2y, In that case, Eq. (42)
becomes

FE—'*'—-——pm 212 1+ (2§ - 1) cos4y]!
Do, epy=1->

X (1 +sin2¢™! sinbyP sinlw,t) cosw,t, (43)

showing that, for ¢, =(n +3)7/w, the value of T is in-
finite. Consequently we see that the behavior of the
proper intelligent state lw,(f, 7))} is qualitatively differ-
ent from the behavior of the Bloch state |w(¢, 7).

Further, as for 7;, the function c,(¢) appearing in Eq.
(41) has the value
c,(T}) = expliwt) cosw,t. (44)

It is clear that for instants ¢, = (2 +1)7/2w, and for
numbers #, m (which have to verify n+m<j~ 1) the
transition probability p(,, ). |,y vanishes with period
T2 = TT/(.OZ.

Looking at the structure of the probability p(,, 1y« im)»
one gets two other special values of 7,

‘Tuy”=2- tanZzp, 'Té”:z. (45>

These values cause the periodic vanishing of p(,, 7y 1m)
too, now because ¢,(t) vanishes with the same period as
above, for each instant t,’,:nﬂ/wz and for quantum num-
bers n, m such that n+1<j+m.

5. DISCUSSION AND COMMENTS

We have been able to establish a clear distinction be-
tween intelligent spin states, minimum uncertainty

1968 J. Math. Phys., Vol. 17, No. 11, November 1976

states, and Bloch states. We have shown that the gen-
eralized intelligen states constitute a refinement of the
Bloch states containing them as extreme cases.

We also pointed out in Eq, (10) the symmetry in the
definition of intelligent states which allow us to restrict
the analysis of 1w,(T)) to any half-plane containing the
origin of the whole complex plane.

Thereafter we evaluated, through the technique of the
generating functions, the expectation values of both the
components of the angular momentum vector and of their
mean square deviations. They turned out to be rational
functions of T7* = tan®36.

Moreover, by making use of some algebraic proper-
ties of the noncompact subgroup K of SL(2, C) we studied
some dynamical properties of the intelligent states valid
both for a reasonable time dependent model of a spin-j
particle in a magnetic atmosphere and for a pointlike
laser.

One important result found is that for a permanent
magnetic field B=2B,&;, proper intelligent states evolve
continuously in the set of generalized intelligent states.
Of course, the two extreme states (» =0, 2§) which are
Bloch and intelligent evolve in the assembly of the com-
plex Bloch states.

The transition probabilities, for a system prepared in
an intelligent state, of becoming in time { a Wigner—
Dicke state, have been computed. It turned out that there
exist three values of the real parameter 7 defining an
intelligent state for which p(, ., vanishes periodically.

In the case of the pointlike laser, the spontaneous and
stimulated emission intensities and the macroscopic
dipole of the system have also been evaluated showing
again a refinement of the results obtained using Bloch
states.

We have also proved that, in general, an intelligent
state is not 2 minimum uncertainty state and we pointed
out where the noncoincidence of both kind of states
stems.

It is also worthwhile to note that, contrary to what
has recently been asserted by Kolodziejczyk,?’ the co-
herent states defined by Mikhailov?! cannot be used to
explain the relationship between coherent and intelli-
gent states, essentially because the only Mikhailov co-
herent state which is intelligent is, trivially, the ground
state.

Finally, let us remark that Vetri’s comment®® that
Radcliffe states which do not point in the z direction and
are labeled “intelligent” in Ref. 1 are actually those
oriented in such a way that the # axis is along x or ¥ is
precisely -what Aragone, Guerri, Salamo, and Tani
meant when they said that “only those Radcliffe states
located on the real line or the imaginary axis are intel-
ligent states.”

APPENDIX A

In this Appendix we are going to show the details con-
cerning some of the calculations whose results have
been used in the text.
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Let us recall that the states we are dealing with have
been written in the form [Eqgs. (13)].

. =, 254,03, |7 ) |70 }surs (A1)
where
P,z [TD=lyz +|7|%y - 2)(z -2))’. (A2)

Suppose we are interested in computing the value of
(w,12 {w,”), where lw,,1) remains as in (Al). !wnz) may be
written

|wn2> :anzazz{pj(z’ 2, |T ‘ ) )Tz»z:l» (A3)

where instead of y we use a different variable g, in or-
der to avoid confusion. Making the scalar product we
have (p; is real for y, z real numbers)

<u"n2 ‘u"n1> = arfzanlagzagl{pj@ 3Ys T)

Xp e, &, TNT,| T">}z=1 (Ad)
but, by virtue of Eq. (5),
(T Ty =+ |7, 1071 + | 7,197 + m27,)%
=3¥p,0,9, | T]) ¥z, 2, |7|)!
(A5)

X[1+ |7]21 - 2/y)(1 - 2/2) ¥
=pj@7ya |T')-1Pj(zyz> ITD-ipN(y’z; |TI)-
Introducing this value of (1",2 {1,) into Eq. (A4) we get
the final value of (w,,2 [w,,l),

<w7l2 ‘wn1>:a:l.‘zan1 agaa;’lpzi(y’z’ l’r‘)}y=1=l

=a:1kzan1pg}n2' (AG)

If we take here n, =n; and impose that the result found
must be 1, we get the modulus of the normalizing factor
a,, as was mentioned in Eq., (14). Once we get the value
of the a,, the scalar product (A6) is completely defined,

ik
<wn2 ’qu)— (przz}q)ilf(pg;nz)i/? .

(A7)

In order to calculate expected values of observables
contained in the SO(3) algebra, it is of crucial impor-
tance to evaluate the generator function X ,(«, 8,v), de-

fined in the ACGT paper as
X 4(a, B, ¥) = (w, | exp(yJ.) exp(8J,) exp(ad,) [w,). (A8)

Introducing the form (A3) of lw,) and applying the
Baker—Campbell—Haussdorff formula we have that

X 4la, B,v) = |a, |*930}{zy exp(- 8/2)
+[1 - 2) +ayllT*(z - 2) + 2] exp(B/2}¥
(A9)
which, if we define the auxiliary function ¢ iny, z, a,
B, v, by
q25, B, v,9,2,7) = {ey exp(- B/2) + exp(8/2)
X[ty -2) +ay][*(z - 2) + vz [}¥,
(A10)

can be rewritten in the shorter form

X ,(@By) = la, |, B, 7). (A11)
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Once we have evaluated X,, it is very simple to es-
timate the expected values of, for instance, Jy, Jy, Jy,
and (AJ;)?, (AJ,)? for the intelligent states |w,).

In fact,

@a| Ty [0, =2Gu, |9, [w,) + 360, | I |0,)

=300 X A)acgera0 + 20X A)acperens (A12)
@, |J5[10,) = (36X 1) 2y (A13)
and
AT} = (%) + D + 20,0 + 2(T5) - 4%
Consequently,
4(AT1)* = (840X Wacsres + (00X 4)ausereo
+2(25X 4) asgoreo + 236X 4) a2gereg
= [(CaX Dassrao + (X W acperaols (Al4)

and in the same way the value of 4(AJ2)2 can be given,

4(Ady)? == (3L, X 4)g — (32,X 1)y +2(22,X ,),

+2(05X, ) +[(0,X 1) = (3,X 1), 1.

It is interesting to observe that g,,(0,0,0)=p,;(v, 2, | T]).

{Al15)

APPENDIX B

In this Appendix we shall give some group results con-
cerning SL(2, C) and its subgroup K.

The four-parameter subgroup K has been extensively
used in connection with the irreducible representations
of the Lorentz group (see for instance Ref, 15), K is de-
fined as the set of all the elements & of SL(2,C) of the
form

A1
K:k(pyq): b a ’
0p
The importance of K lies in the fact that any element
1 of SL(2, C) can uniquely be decomposed in the form

-1 )
l:k&, k:p q, 2 = 1
0p 2 1

p,q complex numbers. (B1)

(B2)

Moreover, as any k{pg) can uniquely be factorized in the
form

pofla\ (o7 _[pT4q
1 * b *p
= explgp™'d,) exp(~ 2npJy), (B3)
! can be uniquely decomposed as a product of three
exponentials,
I =exp(gp™'J,) exp(- 21np * J;) exp(aJ.).
Let an arbitrary /< SL(2,C) be given,
N (B4)
It is easy to check that
I =exp(l,l;J,) exp(~ 21nl,J,) exp(4l77.). (B5)
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The elements k(y, 7) defined in Eq. (28) have the struc-
ture (B1), therefore the convenience of dealing with K
(even if the restriction one could make of keeping p real
could suggest that the three-dimensional subgroup X’
={kc K :p real} should play some specific role, more
centrally than K itself).

Just for the sake of completeness it is possible to
write down the four-dimensional Lorentz transformation
A(R) represented by %(y, T). Following Gel’ fand, Graev,
and Vilenkin® it is straightforward to prove that A(k)
=A\,, where A is the standard Lorentz boost (Iy#1)
and A, is a distortion of the {xz,x'} two-dimensional
plane (or of the {x!,x”} two-plane accordingly to whether
T is a real or an imaginary number, respectively). The
distortion A, turns out to be

(Ap)* =x",
(Agx)" =x" +T,m¥x* + 2!/ ?ReT 2’ - 2/ Im7,x!, (B6)
(Agr) =x' = 21 2Im7T ", (Ax)? =x° +2!/*ReTx*,
while the boost A; applied to x= Ayx gives
(M) =y7%", (AZ) =y%",
(M) =%y, (AR)y=13,, (B7)

where we denoted by x*=2"1/2(x* £ x%) the usual two null
coordinates.

We are interested in the decomposition (B5) for the
operator U(t)k(y, 7) in order to have |w,(t, 7)) written in
a way resembling an intelligent state. Calculating the
matrix product, we get

vyl cos?p expliw.t) +v~1 sin®y exp(=~ iw,t), [T(y~ 2)cos?y +vy siny cosy] expliw_t)

t=utme, n=( " )=
Iy 1,

With this result, one obtains for lw,(t, 7)) =U(t) lw,(1)),
w,(t, 7)) = a, ()Y 25y, £, T) |- )

=a,Y 95 exp(,fi', - 7, (BY)
or what is the same,
L, (t, 7)) = a, (1) Y, % {exp(24j argl,)
X (|5 [2+ 1,197 15EH (B10)

in terms of the Bloch state |7)=|5,[;!). In the case
where n =0 (and consequently the term has been pre-

pared in a Bloch state), we have for |w,(t, 7)),
[w(,(t, 7)) = exp(245Y, argi4) .Y, lizi21>, (B11)

a state which differs by a phase factor 2jY,argl, from
the standard Bloch state corresponding to the complex
number 7¢) =Y (,0;").

The explicit expression shown in Eq. (B10) for
lw,(t, 7)) allows an easy calculation of the transition
number {u lw,(¢, 7)) for an arbitrary coherent spin state

fuy,

(i [w0,(t, ) =a,(T)ag (1) Y135 {(z_‘4 + u*l,)H}
=a,(Tag(u)(1n) (i]) [siny(sing + 7 cosy)

X exp(iw,t) + cosyp(cosy ~ T siny) exp(— iw.t)
+ u* siny(sinyT ~ cosy) exp(- iw,t)

+ u* cosy(T cosy + siny) exp(iw.t)]"

X [sing(sinyd — T cosd) expliw,t)

+ cosy{cosyd + T siny) exp(- iw.t)

~ w* siny(T siny + cosy) exp(- iw,t)
]Zj-rU .
(B12)

— u* cosy(T cosyp — siny) expliw_t)
This expression is very useful in order to investigate
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+[1 - 2) cos®d -y siny cosy] expliw, 1),
(B8)

y “1 siny cosy|expliw,t) — exp(~ iwt)], [y sin®p + 7y - 2) siny cosy] expliw,t)

+{v cos?p— Ty — 2) sinyg cosyp] exp(- iw_t).

|

under what conditions [w,(¢, 7)) could be an intelligent
state. It is sufficient to calculate {u lw}(1’)) and to com-
pare its value with (B12). If we prove that there exists
(n’, 7') such that for any complex p, (il (')
={ulw,(t, T)), then the state lw,(t, 7)) keeps being intel-
ligent along its evolution under the influence of the
Hamiltonian given in Eq. (26). Since

oo (7)) _
=y (T)ag W) (1) (jf) (1 7y (1= ),
(B13)

and both polynomials in the variable u* (B12) and (B13)
must be identical, they have to contain the same roots
with the same multiplicity. Therefore, #»’ has to be equal
to n. Moreover, if we proceed with the analysis, one
can immediately recognize that they are going to co-
incide iff sin2¢=0. That implies cos2¢y=(- 1)* or,
equivalently, ¥ =nn/2. The condition y=n7/2 [see

Eq. (26b)] is equivalent to saying that B.=0. Thus,

after Eq. (B8), we have

lw,,(t, 7)) = exp(- 24jyB,t) |w,,('r exp(2iyB,t))). (B14)
Of course, if T=|7| exp@Enn/2), v =T exp(2ivB,t)

=7l exp(i(mr/z + 2yB,t)) we get a generalized intelligent
state, which is strictly intelligent for ¢ such that 2¢B,¢
=mu/2, i.e., it is periodically intelligent.
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