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Abstract
Generalized coherent states associated with SU(1,1) Lie algebra are reviewed. A state
is called intelligent if it satisfies the strict equality in the Heisenberg uncertainty relation.
The eigenvalue problem satisfied by intelligent states (IS) is solved. The IS associated with
SU(1,1) Lie algebra are investigated. We have constructed some realizations for our results
of IS, and some applications are discussed. Some nonclassical properties such as Glauber
second-order correlation function, photon number distribution and squeezing are investigated.

PACS numbers: 42.50.Dv, 03.65.Fd, 02.20.Qs

1. Introduction

Some general structural features of dynamical theories can
be exhibited in a study of the relation between classical and
quantum mechanics. The essential dynamical structure of
these theories as that of a Lie algebra of functions of basic
dynamical variables provides the infinitesimal generators of a
group of dynamical transformations. Therefore, group theory
is a powerful means for joining things which, at first glance,
seemed to be completely disjoint. It also provided means to
disentangle complicated operations, and made its way into
quantum mechanics [1], chiefly into the theory of atoms,
molecules and solids. The relation between classical and
quantum mechanics in the framework of Lie groups has been
studied [2]. The group theoretical methods have been widely
used in various branches of physics, such as high-energy
physics, condensed matter, atomic and nuclear physics [2–4].
Particularly, the infiltration of the group theory into quantum
optics occurred later, unlike the use of the Heisenberg–Weyl
group from its very beginning in studying some physical
structures [1]. Groups involving simple Lie algebras such as
SU(2), SU(1,1) and their simple generalizations (e.g. higher
symplectic groups SP(2n,R)) have been used in studying
many problems in quantum optics [3, 4].

Glauber coherent states (CSs) [5] are eigenstates of an
annihilation operator with the property that the uncertainty
product for the position and momentum canonical variables
attains its minimum value, when the two standard variances
are equal. Squeezed coherent states (SCSs) ([6–10], [11]
and references therein) are characterized by the property
that one of the variances is smaller than that in a CS. This
happens, naturally, at the expense of the other, because of
Heisenberg’s principle. It may therefore prove to be useful

in low-noise detection experiments. The original forms in
which SCSs were written, are found in [6]. The notation of
coherent and SCSs is not restricted to the electromagnetic
field (characterized by the photon annihilation and creation
operators a and a+) but can be extended to any set of operators
obeying a Lie algebra [12–18]. Quantum optical problems
naturally offer us a number of Lie algebras such as: h(4),
SU(2) and SU(1,1). The h(4) (or Heisenberg–Weyl) algebra
involves the electromagnetic field operators a, a+ and the basis
for the definition of the usual CSs.

The dynamical group SU(1,1) has long been used in
quantum optics as it is intimately related to the squeeze
operator which is an element of the SU(1,1) group [17]. This
group is the simplest non-Abelian noncompact Lie group
with a simple Lie algebra, and shares with SU(2) a common
complex extension. The CSs of the SU(1,1) group can be
divided into two broad categories: (a) the Barut–Girardello
(BGCSs) [15] and (b) the Perelomov (PCSs) [16]. In
two papers [15, 16] one finds basic investigations in
which the concept of CSs has been extended beyond the
Heisenberg–Weyl group for the first time. Perelomov [16, 17]
has generalized the idea of CSs to other Lie groups, in which
elaborate methods of groups were employed in studying
the properties of physical systems. The BGCSs have been
investigated in mathematical framework in [19]. The duality
of these two types of SU(1,1) CSs and an intermediate type
have been considered in [20]. In addition, the SU(1,1) Lie
algebra is of great interest, because it can characterize many
kinds of optical systems. In particular, the bosonic realization
of SU(1,1) describes the degenerate and non-degenerate
parametric amplifiers. It would be interesting to mention here
that the customary squeezed states of photons can be viewed
as realizations of the SU(1,1) Lie group [21, 22].
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Intelligent states (IS) are quantum states which equalize
the Heisenberg uncertainty relation [23–40]. It goes without
saying that the states providing an equality in the uncertainty
relation do not, in general, reach minimum uncertainty [18].
In recent years, there have been many studies concerning
IS, mainly in the context of quantum optics [23–40].
One of the principal reasons for this interest is the close
relationship between IS and squeezing. These states may
exhibit various nonclassical properties such as squeezing, and
sub-Poissonian statistics. The so-called intelligent spin states
have been constructed [23]; they can also be generated from
the atomic CSs or Bloch states [24]. A simple algebraic
method which permits the reproduction of these states has
been developed for calculating the matrix elements [25]
and computing the Clebsch–Gordan coefficients [26]. The
existence of IS associated with the non-compact group
SU(1,1) has been investigated [27]. The SU(1,1) IS are studied
in the observables in two mutually orthogonal directions
in a 2 + 1 Minkowski space by Puri and Agarwal [28].
But Fu and Sasaki defined a class of squeezed states for
the SU(1,1) Lie algebra as an approach for solving the
eigenvalue problem corresponding to equality of uncertainty
relation [29]. The concept of algebra eigenstates and two-
photon algebra eigenstates is related to the IS; it has been
used in studying squeezing [30, 31]. In addition, the two-
mode IS of SU(1,1) Lie group and its statistical properties
have been considered [32].

A scheme for generation of single-mode IS based
on the process of non-degenerate down-conversion has
been discussed in [33]. This scheme employs quantum
correlations (the entanglement) created in a non-degenerate
parametric amplifier between the vacuum and squeezed
vacuum, which may manipulate the state of one of the
modes by measurement of the photon number in the
other. For the quantized vibrational motion of a trapped
ion [34], the scheme for generating SU(1,1) IS has been
proposed in [35]. The proposed scheme for realization of
both the single- and two-mode SU(1,1) IS of centre-of-mass
motion of a trapped ion [34] may be accessible to current
experimental set-ups. Experimentally feasible IS are studied
for parameter values leading to the crescent topography of
their quasi-probability, and to increase the sensitivity of
interferometric measurement [36]. An analytic representation
in the unit disk for SU(1,1) IS has been performed in [37].
The IS associated with the Holstein–Primakoff realization
of the SU(1,1) Lie algebra have been considered in [38].
These states contract, under certain conditions, to Glauber
CSs or SCSs [38]. Recently, polynomial IS, a simple method
for constructing IS, especially for SU(2) and SU(3), have
been introduced [39]. Also, large-uncertainty IS for angular
momentum and angle have been discussed [40], and the
difference between the IS and minimum uncertainty product
states is emphasized.

On the other hand, the SU(1,1) generalized IS which
minimize the Robertson–Schrödinger uncertainty relation are
considered mathematically by Trifonov [41]. The eigenvalue
equation has been solved using the differential forms of
the generators of an algebra. Some treatments in this
direction related to different potentials [42–45] and different
algebras [46–48] have been introduced. Thus, generalized

IS have been investigated for nonlinear oscillators [42],
for two-body Calogero model [43], for infinite square
well potential [44] and for exact solvable quantum
systems [45]. These results were obtained by using the
Gazeau–Klauder and Klauder–Perelomov generalized CSs to
derive the corresponding Robertson–Schrödinger IS [41–48].
In addition, the IS for an interpolating algebra [46], for SU(N)
algebra [47], and SU(3) [48] have been investigated.

The aim of this work is to solve a recurrence relation
corresponding to the eigenvalue equation of IS, rather
than using the differential forms for generators discussed
in [33, 39, 41]. This paper is organized as follows: in section 2,
we briefly review some basic results of CSs associated with
SU(1,1) Lie algebra. In section 3, we review the definition of
IS and find special cases. The solution of the main eigenvalue
problem has been introduced. Some realizations and special
cases are discussed in section 4. In section 5, we discuss some
statistical properties of the obtained IS such as correlation
function and photon number distribution.

2. SU(1,1) CSs

In this section, some basic properties of the SU(1,1) Lie
algebra CSs and of the unitary irreducible representations
needed in the following sections are collected.

The SU(1,1) Lie algebra is spanned by the three
generators K1, K2 and K3, which satisfy the following
commutation relations:

[K1, K2] = −iK3, [K2, K3] = iK1, [K3, K1] = iK2.

(2.1)
It is convenient to use the raising and lowering generators
K± = K1 ± iK2, which satisfy

[K3, K±] = ±K±, [K−, K+] = 2K3. (2.2)

The Casimir operator K 2
= K 2

3 − K 2
1 − K 2

2 for any
irreducible representation is K 2

= k(k − 1)I . Thus, a
representation of SU(1,1) is determined by the parameter k
which is the so-called Bergmann index. The corresponding
Hilbert space is spanned by the complete orthonormal basis
|n, k〉:

〈m, k|n, k〉 = δmn,
(2.3)

∞∑
n=0

|n, k〉〈n, k| = I.

For SU(1,1) there are many unitary irreducible
representations, and since SU(1,1) is a noncompact group,
they are all of infinite dimensions. Some of the representations
are, in fact, continuous, but here we shall only deal with
the representations known as the positive discrete series
for which the operator K3 is diagonal and has a discrete
spectrum. Its discrete representation is

K+|n, k〉 =

√
(n + 1)(2k + n)|n + 1, k〉,

K−|n, k〉 =

√
n(2k + n − 1)|n − 1, k〉, (2.4)

K3|n, k〉 = (n + k)|n, k〉,

2
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where (n = 0, 1, 2, . . .). The ground state (the cyclic vector)
of the representation is given by the condition K−|0, k〉 = 0.
All states can be obtained from the lowest state |0, k〉 by the
action of the ‘raising’ operator K+ according to

|m, k〉 =

√
0(2k)

m!0(2k + m)
(K+)

m
|0, k〉, (2.5)

where 0(x) is the gamma function.
The PCS |α, k〉Per for SU(1,1) Lie algebra may be

obtained by applying the unitary operator DPer(ξ) to the
lowest state |n = 0, k〉 [16, 17],

|α, k〉Per = DPer(ξ)|0, k〉

= (1 − |α|
2)k

∞∑
n=0

√
0(2k + n)

n!0(2k)
αn

|n, k〉, (2.6)

where ξ = |ξ |eiθ0 is a complex number, with α = eiθ0 tanh |ξ |,
and

DPer(ξ)= exp(ξK+ − ξ ∗K−)

= exp(αK+)(1 − |α|
2)K3 exp(−α∗K−) (2.7)

is the SU(1,1) displacement operator. The PCSs form an
overcomplete set of states.

There is another CS of SU(1,1) which is known as the
BGCS [15], which is defined as the eigenstate of the lowering
operator K−,

K−|α, k〉BG = α|α, k〉BG, (2.8)

and it can be expressed as

|α, k〉BG =

√
|α|2k−1

I2k−1(2|α|)

∞∑
n=0

αn

√
n!0(n + 2k)

|n, k〉, (2.9)

where Iν(x) is the modified Bessel function of the first kind.
The BGCSs are normalized, but they are not orthogonal to
each other.

3. SU(1,1) IS

The uncertainty relation limits the precise knowledge of
conjugate physical quantities of a system. The states which
minimize the uncertainty relation can describe the quantum
system as precisely as possible. First, for given two
self-adjoint operators A and B, one can obtain, using the
Cauchy–Schwartz inequality, the uncertainty relation

〈(1A)2〉〈(1B)2〉> 1
4 |〈[A, B]〉|2, (3.1)

where the variance and expectation value are given by
(1A)2 = 〈A2

〉 − 〈A〉
2 and 〈A〉 = 〈ψ |A|ψ〉, respectively. A

state is called intelligent if it satisfies the strict equality in
(3.1). It is well known [23] that such states, or IS, must satisfy
the eigenvalue equation

(A − iλB)|ψ〉 = η|ψ〉, (3.2)

where λ is a positive real parameter and η a complex number.
In the case in which [A, B] = cI , where c is constant and I

the identity operator, the minimum uncertainty states coincide
with the IS [18].

The SU(1,1) Lie algebra IS are defined as follows: let us
now apply the above approach to the special case where A, B
are K1, K2 of equation (2.1), then the uncertainty relation
would be

〈(1K1)
2
〉〈(1K2)

2
〉> 1

4 〈K3〉
2. (3.3)

Accordingly, a state is said to be SU(1,1)-squeezed [18] if

〈(1Ki )
2
〉6 1

2 |〈K3〉|, i = 1, 2. (3.4)

However, IS |ψ〉 are solutions of the eigenvalue problem

(K1 − iλK2)|ψ〉 = η|ψ〉. (3.5)

It is convenient to rewrite equation (3.5) in terms of K± as

(α1 K− +β1 K+)|ψ〉 = 2η|ψ〉, (3.6)

where α1 = 1 + λ and β1 = 1 − λ. In order to have
normalizable solutions, it is necessary that α1 > β1. It is
clear that, for the special case λ= 1, equation (3.6) reduces
to BGCSs. Gerry and Grobe [38] proved that in the limit
of large k the SU(1,1) Lie algebra contracts to that of
the Heisenberg–Weyl algebra and the Holstein–Primakoff
SU(1,1) CSs contract to ordinary CSs or SCSs, depending
on λ.

Let us now consider the eigenvalue problem (3.6), we
expand the state |ψ〉 on the basis of |n, k〉, as

|ψ〉 =

∞∑
n=0

cn(k)|n, k〉 (3.7)

and apply (2.4) to obtain the recurrence relation among the
coefficients cn as follows:

α1

√
(m + 1)(m + 2k)cm+1 +β1

√
m(m + 2k − 1)cm−1 − 2ηcm

= 0. (3.8)

Assuming cm = (
√
β1/α1)

mdm , we obtain

1
2

√
(m + 1)(m + 2k)dm+1 + 1

2

√
m(m + 2k − 1)dm−1 − zdm

= 0, (3.9)

where z =
η

√
α1β1

. Comparing (3.9) with the Pollaczek
polynomials Pn(θ, b) [49–51], the recurrence relation [50],
namely,

1n−1 Pn−1(θ, b)+1n Pn+1(θ, b)= θ Pn(θ, b); (3.10)

with

1n =
1
2

√
(n + 1)(n + 2b); and P0(θ, b)= 1,

the solution for the eigenvalue equation (3.9) is directly the
Pollaczek polynomials, namely,

dm = Pm(z, k)

= (i)m
(
0[m + 2k]

m!0[2k]

)m/2

2 F1(−m, k + iz; 2k; 2), (3.11a)

3
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which for every b > 0 form a complete orthonormal set of
polynomials on the real line with the weight function

ρb(θ)= (2)2b−1[|0[b + iθ]|2/(π0[2b])]. (3.11b)

The orthonormality and completeness of the set of
polynomials Pn(θ, b) using an integral representation of the
hypergeometric function and some useful results of Pollaczek
polynomials can be found in [50]. We thus obtain the final
result for the IS in the form

|ψ〉 = c0

∞∑
m=0

(i)m
(
(1 − λ)0[m + 2k]

m!(1 + λ)0[2k]

)m/2

× 2 F1(−m, k + iz; 2k; 2)|m, k〉, (3.12a)

where the normalization factor c0 has the form

|c0|
−2

=

{
∞∑

m=0

(
(1 − λ)0[m + 2k]

m!(1 + λ)0[2k]

)m

× |2 F1(−m, k + iz; 2k; 2)|2
}

(3.12b)

and2 F1(a, b; c; x) is the hypergeometric function and z =
η

√
(1+λ)(1−λ)

. After the review and formulation of the problem,
we introduced the analytical solution for the recursion relation
equation (3.9) by a new approach different from that used
in [33] for IS, and [41] for generalized IS, which minimize
the Robertson–Schrödinger uncertainty relation. The solution
for the IS of the SU(1,1) group given by equation (3.12) is
convenient for studying some realizations, special cases and
some nonclassical properties of the field states.

4. Some realizations for SU(1,1) and special cases
of IS

4.1. The one-mode realization

In the one-mode realization for SU(1,1) algebra, we form the
quadratic combinations

K+ =
1
2 a+2

, K− =
1
2 a2, K3 =

1
2 (a

+a + 1
2 ). (4.1)

The Casimir operator is K 2
= −3/16I . Therefore, there are

two irreducible representations with k = 1/4 and k = 3/4;
consequently, we obtain a realization of SU(1,1) algebra. In
this case, the corresponding eigenvalue equation is a special
case from (3.6) of IS, which reads as

(α1a2 +β1a+2
)|ψ〉 = 4η|ψ〉. (4.2)

The minimum uncertainty states for amplitude-squared
squeezing [51–53] are the solutions to the eigenvalue problem
(4.2). These states have been studied and the general
solutions to the eigenvalue have been found [53]. Also,
these states are associated with the case of j = 2 in the
definition of higher power CSs [50, 54]. Complete solutions
of (4.2) in the coordinate representation, in terms of confluent
hypergeometric functions have been introduced [54]. The
eigenstates of the operator K1 = 1/2(a2 + a+2

), i.e. λ= 0,
have been discussed in [50]. Most physical states are produced
for some values of λ, when 0< λ < 1 and λ > 1.

As a special case of (4.2), in the two-photon realization
the Barut–Girardello eigenvalue equation takes the form

a2
|α, k〉BG = 2α|α, k〉BG. (4.3)

Therefore, it is clear that the Barut–Girardello states coincide
with the even and odd CS [55, 56],

|α, 1/4〉 = |α〉e =
1√

2(1 + e−2|α|2)
[|α〉 + |−α〉],

|α, 3/4〉 = |α〉o =
1√

2(1 − e−2|α|2)
[|α〉 − |−α〉] (4.4)

for k = 1/4 and k = 3/4, respectively. Here |α〉 = D(α)|0〉

are the Glauber CS, e and o indicate even (k = 1/4) and odd
(k = 3/4) subspaces correspondingly.

4.2. Perelomov CSs

All the PCSs |α, k〉per can be viewed as the SU(1,1) IS. They
are eigenstates of the following eigenvalue equation [29]:

(K− −α2 K+)|α, k〉per = 2kα|α, k〉per. (4.5)

This can be directly proved by differentiating |α, k〉per with
respect to |ξ |. Note that if α2

= −
β1

α1
, the equation (4.5)

tends to equation (3.6) with eigenvalue 2kα1α [29]. Here,
we can show some realizations of PCSs towards nonclassical
quantum states. For one-mode realization (equation (4.1)) the
PCSs are the squeezed vacuum states [6]. In this case, the
SU(1,1) CSs are the single-mode squeezed states. For k =

1/4, the squeezed vacuum is given by

|α, 1/4〉 = (1 − |α|
2)1/4

∞∑
n=0

√
(2n)!

2nn!
αn

|2n〉 (4.6a)

and for k = 3/4, the squeezed one-photon state is given by

|α, 3/4〉 = (1 − |α|
2)3/4

∞∑
n=0

√
(2n + 1)!

2nn!
αn

|2n + 1〉 (4.6b)

with α =
ξ

|ξ |
tanh |ξ | = tanh r eiθ0 .

4.3. Nonlinear squeezed states (NLSSs)

The nonlinear coherent states (NLCSs) [57–59] |α〉f , are
right-hand eigenstates of the product of the boson annihilation
operator a and the operator-valued function f (a+a) of
the number operator N = a+a. They satisfy A|α〉f = α|α〉f ,
where A = a f (N ). The nature of the nonlinearity depends on
the choice of the function f (N ). These states may appear as
stationary states of the center-of-mass motion of a trapped
and laser-driven ion far from the Lamb–Dicke regime [57],
and may be considered as particular cases of f-CSs [58]. In
a similar context of NLCSs, the nonlinear squeezed vacuum
states are given by

|z〉f = exp
[

1
2 (z A+2

− z∗ A2)
]
|0〉 = Sf(z)|0〉

for the operator function f (N ) being the unitary operator in
this definition, i.e. f +

= f −1 and [A, A+] = 1 [60–62]. Hence,
in what follows, the two cases in which f (N ) is the unitary or
the non-unitary operator function will be discussed.

4
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4.3.1. The unitary nonlinear function. The NLSSs [54]
realization of SU(1,1) Lie group has been constructed
[61, 62]. We mention the NLSSs realization of the SU(1,1)
group by constructing the K+ and K− operators in the
following way [61, 62]:

K+ =
1
2 ( f (N )+a+)

2
=

1
2 A+2

,
(4.7a)

K− =
1
2 (a f (N ))2 =

1
2 A2,

where the operator-valued function f (N ) is a reasonably
behaved function of the photon number operator N . For the
operator K3 to be in the form of (4.1), f must be a unitary
operator, i.e. f +

= f −1. Under this condition, we get

K3 =
1
2 (N + 1

2 ). (4.7b)

The unitary group operator DPer(α) f for the nonlinear
squeezing case is the operator given in (2.6), but with
K±, K3 given by (4.7) under the condition f +

= f −1.
Therefore, the SU(1,1) CSs are the NLSSs. Consequently, the
nonlinear-squeezed vacuum is given by

|α, 1/4〉 f = (1 − |α|
2)1/4

∞∑
n=0

√
(2n)!( f (2n)!)−1

2nn!
αn

|2n〉,

(4.8a)
whereas the nonlinear-squeezed one-photon state is given by

|α, 3/4〉 f = (1 − |α|
2)3/4

∞∑
n=0

√
(2n + 1)!

2nn!( f (2n + 1)!)
αn

|2n + 1〉,

(4.8b)
where f (0)= 1, f (n)! =

∏n
i=0 f (i). The states (4.8) are the

SU(1,1) group realizations by a nonlinear-squeezed vacuum
and one-photon states.

4.3.2. Realization for non-unitary f. Even if the operator
function f (N ) is not a unitary operator, one can still define
a NLSS as given in [61, 62]. The steps towards this depends
on using a canonical conjugate operator. If we have

A = a f (N ), A+
= [ f (N )]+a+, (4.9a)

then the canonical conjugate operators are

B+
=

1

f (N )
a+, B = a

1

[ f (N )]+
. (4.9b)

The operators A and B satisfy the commutation relations

[A, B+] = 1, [B, A+] = 1. (4.9c)

In what follows, the operator-valued function f is assumed to
be a well-behaved real function. The use of the operators A
and B+ (instead of A+) does not ensure the squeeze operator
being unitary; thus, one looks for the eigenfunctions of the
operator

C1 =
1√

1 − |ξ1|
2
(A − ξ1 B+), (4.10)

with the eigenvalue zero, i.e. the nonlinear-squeezed vacuum
states are the solutions of the equations

C1|91〉 f = 0. (4.11)

It is effortless to find the expression

|91〉 f = N1

∞∑
m=0

√
(2m)!( f (2m)!)−1

2mm!
ξm

1 |2m〉, (4.12a)

where N1 is the normalization constant, while the
nonlinear-squeezed one-photon states are the solutions of
the eigenvalue equation

C2
1 |81〉 = 0. (4.13)

Carrying out the calculations, it is easy to find that these states
are composed of the odd Fock states and are given by

|81〉 f = Ń1

∞∑
m=0

√
(2m + 1)!( f (2m + 1)!)−1

2mm!
αm

1 |2m + 1〉,

(4.14)
with Ń1 normalization constant. Some of the nonclassical
properties of these states have been discussed
recently [61, 62]. The states for the particular case of
even and odd states of single-mode realization of SU(1,1)
are obtained by letting k = 1/4 and k = 3/4, respectively.
Therefore, the basis |m, 1/4〉 in terms of Fock state basis is
|2m〉 and |m, 3/4〉 = |2m + 1〉 [63, 64].

4.4. The two-mode realization for SU(1,1) IS

Let a (a+) and b (b+) represent the usual bosonic operators
associated with the two field modes. The generators can be
constructed [32, 63] as follows:

K+ = a+b+, K− = ab, K3 =
1
2 (a

+a + b+b)+ 1
2 . (4.15)

Consequently, the quadrature operators are given by

K1 =
1
2 (K+ + K−)=

1
2 (a

+b+ + ab),
(4.16)

K2 =
1

2i
(K+ − K−)=

1

2i
(a+b+

− ab).

The eigenvalue problem equation (3.6) in terms of bosonic
operators of the two modes has the form

(α1ab +β1a+b+)|ψ〉 = η|ψ〉. (4.17)

The general solution for the equation (4.17) has been
investigated in [36, 63]. To obtain a solution by using the
two-mode Fock states as a basis, equation (4.17) reduces
to the same form of the recurrence relation (3.9), with k =
1
2 (Na − Nb + 1).

Note that for β1 = 0, the eigenvalue problem reduces to

ab|ψ〉 = η|ψ〉, (4.18)

whose solution is the pair CSs [64], or correlated SU(1,1)
CSs [65]. These states may be produced by the action of a
nondegenerate parametric amplifier on a two-mode state [65].
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4.5. Nonlinear two-mode realization for SU(1,1) IS

The generators for the unitary operator function fi such that
f +
i = f −1

i and i = 1, 2, can be constructed as follows:

K+ = f1(Na)a
+ f2(Nb)b

+,

K− = a
1

f1(Na)
b

1

f2(Nb)
,

(4.19)

K3 =
1
2 (Na + Nb)+ 1

2 ,

where a+a = Na and b+b = Nb. Then, the original
commutation relations of SU(1,1) Lie algebra hold.
However, it is to be noted that K+ is the hermitian
conjugate of K− in this case, because f +

i = f −1
i and i = 1, 2.

The eigenvalue problem equation (3.6) in terms of nonlinear
bosonic operators of the two modes has the form{
α1

(
a

1

f1(Na)
b

1

f2(Nb)

)
+β1( f1(Na)a

+ f2(Nb)b
+)

}
|ψ〉

= η|ψ〉. (4.20)

The above are very important for new developments in
quantum information processing. The generation and some
statistical properties of a special case of equation (4.20),
the so-called nonlinear pair-CSs, have been investigated
recently [66]. In this case we set β1 = 0, then the eigenvalue
problem (4.20) reduces to

a
1

f1(Na)
b

1

f2(Nb)
|ψ〉 = η|ψ〉, (4.21)

which is the two-mode nonlinear CSs studied in [67].

5. Nonclassical properties

Nonclassical effects are characterized by photon anti-
bunching, sub-Poissonian photon statistics and quadrature
squeezing (see for example [68]). The definition of
nonclassicality is based on the existence of a well-behaved
P-function [5, 69]. This means that a state is considered to
have a classical counterpart if the P-function has the properties
of a probability measure. For a nonclassical state, it fails
to be interpreted as a probability. Some methods for the
characterization of the nonclassical properties of radiation
have also been discussed [69–72]. For example, the negativity
of the Wigner function may be used as a signature of
nonclassicality [73].

In this section, we shall examine the auto-correlation
function, photon number distribution and squeezing. For
simplicity we set cn(k)= cn of equations (3.7) and (3.12)
in our calculations. It is clear that the coefficients cn in
general depend on polynomials; therefore, we shall resort
to performing numerical calculations. In general, for special
values of the Bergmann index k and numerical values of λ
and η, the IS may correspond to one of the bosonic states.

5.1. Auto-correlation function g(2)(0)

To calculate the moments of the quadratures (4.16) in the IS,
one has to find average values of products of the operators

K− and K+ in these states, they have the following forms:

〈K q
−〉 =

∞∑
r=0

cr c∗

r−q

√
r !(2k + r − 1)!

(r − q)!(2k + r − q − 1)!
, (5.1)

〈K p
+ 〉 =

∞∑
r=0

cr c∗

r+p

√
(r + p)!(2k + r + p − 1)!

r !(2k + r − 1)!
, (5.2)

〈K p
+ K q

−〉 =

∞∑
r=0

cr c∗

r+p−q

√
r !(2k + r − 1)!

(r − q)!(2k + r − q − 1)!

×

√
(r + p − q)!(2k + r + p − q − 1)!

(r − q)!(2k + r − q − 1)!
, (5.3)

〈K q
−K p

+ 〉 =

∞∑
r=0

cr c∗

r+p−q

√
(r + p)!(2k + r + p − 1)!

(r)!(2k + r − 1)!

×

√
(r + p)!(2k + r + p − 1)!

(r + p − q)!(2k + r + p − q − 1)!
, (5.4)

where cn are given in equation (3.12).
The second-order coherence function for the SU(1,1)

operators is defined by [74]

g(2) =
〈K+

2 K 2
−
〉

〈K+ K−〉2
. (5.5)

A method for measuring general space–time-dependent
correlation functions of quantized radiation fields has
been proposed in [73]. It is shown that all the required
moments can be determined by homodyne correlation
measurements [72]. The second-order correlation function
of the SU(1,1) realization in the BGCSs and PCSs is
also considered [74]. In the one-mode realization (4.1), the
Glauber second-order coherence function [5] can be obtained.
The light with g(2) < 1 is sub-Poissonian light, with 1<
g(2) < 2 is super-Poissonian light, and with g(2) > 2 is called
super-thermal light. Coherent light has g(2) = 1, whereas
thermal light has g(2) = 2.

In figure 1, we display the behaviour of the auto-
correlation function g(2) against λ (figures 1(a) and (b))
and against η (figures 1(c) and (d)). We assume the other
parameters as follows: η = 1/4, 1 and k = 1/4, 3/4, in
figures 1(a) and (b), and λ= 1/4, 1 and k = 1/4, 3/4, in
figures 1(c) and (d).

For the case of η = 1/4, we note that the state with
k = 1/4 starts with sub-Poissonian behaviour for a long
range of λ and becomes super-Poissonian for λ > 2.3.
On the other hand, the state k = 3/4 starts at slightly
super-Poissonian, decreases to sub-Poissonian until λ= 0.9
at which it reaches its minimum and then increases very
fast to become super-Poissonian around λ > 1.2, and acquires
super-thermal behaviour for values of λ > 1.5.

In figures 1(c) and (d), we plot the autocorrelation
function g(2) against η. It is found that super-Poissonian
behaviour is apparent for a short range of η, when we take
λ= 1/4 for both k = 1/4 and k = 3/4. This range extends
as λ is increased to 1, see figures 1(c) and (d). As seen in
figure 1(d), sub-Poissonian behaviour exists for the rest of the
range considered.
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Figure 1. Coherence function g(2) measured on the vertical axis
and the horizontal axis indicates the parameters λ in (a), (b) and η
in (c), (d). The remaining parameters are: (a) η = 1/4, k = 1/4
(solid curve) and η = 1/4, k = 3/4 (dashed curve); (b) η = 1,
k = 1/4 (solid curve) and η = 1, k = 3/4 (dashed curve).
(c) λ= 1/4, k = 1/4 (solid curve) and λ= 1/4, k = 3/4 (dashed
curve); (d) λ= 1, k = 1/4 (solid curve) and λ= 1, k = 3/4
(dashed curve).
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Figure 2. The photon number distribution P(n) with k = 1/4 and
λ= 0.5.

5.2. Particle number distribution

We start by looking at the particle number distribution for the
state |9〉. The number distribution Pk(n) is given by

Pk(n)= |〈k, n|9〉|
2
= |cn(k)|

2. (5.6)

In figure 2, we illustrate the quantum number distribution
Pk(n) against η, for λ= 0.5 and k = 14. For η = 0, the
distribution has its maximum at n = 0. The position of the
mean peak of the number distribution P(n) depends on
the value of η. The function P(n) does not show oscillations
for the values of η and λ considered here. For η = 0,
the vacuum is the most effective state. As η increases,
other states start to be effective. Especially for k = 1/4, the
state n = 1 becomes the most effective state for η = 1.5
with small contributions from other states. The photon-like
number distribution introduced in this section is in Bergmann
space with orthogonal basis, not the standard photon number
distribution in the Fock space. Also, small oscillations of P(n)
appear for the NLCSs [62], in contrast to the results in [9] for
the standard squeezed CSs which are depicted in [60].

5.3. Squeezing evolution for IS

The study of squeezing properties associated with the SU(1,1)
states aims mainly at the reduction of the quantum noise
in the act of measurement in the two important fields:
spectroscopy [36, 75] and interferometry [76]. Squeezing
fluctuations are important in quantum measurement and
communication theories. In the SU(1,1) Lie group [36, 77],
fluctuations in the quadrature operators K1 and K2 are
squeezed if the following condition is satisfied:

(1K1)
2 < 1

2 |〈K3〉| or (1K2)
2 < 1

2 |〈K3〉|, (5.7)

where the variances (1K j )
2
= 〈K 2

j 〉 − 〈K j 〉
2, j = 1, 2.
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Figure 3. Squeezing parameter Fy against the parameter η with
k = 1/4, and λ are: λ= 0.1 (solid curve), λ= 0.5 (dotted curve),
λ= 1.5 (chained curve) and λ= 3 (dashed curve).

The condition of squeezing can be expressed as the
reduction in the fluctuation of the K1- or K2-component
through the quantities

Fx < 0 or Fy < 0, (5.8)

respectively, where Fx,y = (1K1,2)
2
−

1
2 |〈K3〉|, and the range

of squeezing depends on the initial state.
In figure 3, Fy calculated from (3.12) is plotted against

η, for various values of λ, while k = 1/4. From this figure,
the SU(1,1) squeezing in the K2-component is detected. As λ
increases, it is noted that the amount of squeezing decreases
for the same value of η. It is observed numerically that
the Bergmann index affects the depth of squeezing in the
K2-component.

6. Discussion

In this paper, we have constructed and studied the SU(1,1)
IS. Some known bosonic states are considered as special
cases of these states. Especially, the bosonic systems (4.2)
which have been studied as: squeezed states for general
systems [78], squeezed CSs associated with the SU(1,1) [79]
and second-order squeezed states [80]. Complete solutions
for equation (4.2) have been introduced in the coordinate
representation [78], in the CS-representation [79, 80] and
in the number-state representation [80]. Statistical properties
such as correlation functions and photon statistics have been
examined, and can be compared with our results. In particular,
the analytical solutions of equation (4.2) are given as formulae
in terms of hypergeometric functions [80].

It is clear that SU(1,1) BGCSs and SU(1,1) PCSs are
special classes of SU(1,1) IS. In the quantum information
tools criteria, some studies have been carried out via
SU(2) and SU(1,1) Lie algebra symmetries [81–89]. For
quantum systems with semisimple Lie group symmetries, the
only special classes of IS are pure states which factorize
upon splitting [81, 86]; these states are the unique Bell
states [81]. The limiting procedure for obtaining separable
states (i.e. products of CSs) upon beam splitting by
performing contractions of SU(2) and SU(1,1) Lie algebras
and of their associated CSs has been examined [86].
In addition, the separability problem in group-theoretical

terms is reformulated by changing the mathematical object
representing quantum states [88]. A method of generating the
entangled SU(1,1) CSs of two types of PCSs and BGCSs is
discussed [82]. The entanglement of SU(1,1) CSs with k =

1/4 (single-mode squeezed vacuum state) and with k = 3/4
(single-mode squeezed one-photon state) is considered [82].
Several aspects of quantum information criteria, such as
entanglement, degree of entanglement, qubit, Bell states and
entropy for SU(1,1) CSs are explored in [82]. In an arbitrary
SU(2) transformation, qubits can be encoded in program state
of a universal programmable probabilistic quantum processor
as reported in [85].

In the two-mode bosonic realization of SU(1,1) Lie
algebra, the corresponding PCS is a maximum entangled
state [83]. For the nonlinear realization of SU(1,1) IS, we
expect it to define the Bell states which can be generated from
a physical system [89]. Also, in a bipartite composite system,
a normalizable BGCS for quantized q-deformed SU(1,1)
Lie algebra has been constructed and the entanglements
have been investigated. Finally, we remark that the general
nonlinear, q-deformed, or nonlinear realization of SU(1,1) Lie
algebra may be used for obtaining entangled states of bipartite
composite systems.

Some investigations have been devoted to testing
the entanglement in non-Gaussian states of discrete and
continuous variables [88, 90–92]. The separability conditions
that can be obtained from the uncertainty relations in the
SU(2) and SU(1,1) Lie algebra have been studied in some
detail in [88]. The class of inequalities obtained in [88] by
using the minimum uncertainty relation and applying it to
the two-mode IS of SU(2), has been included as special
cases of the work done in [90, 91]. This class is optimal
in detecting entanglement for a broad class of non-Gaussian
entangled states. These recent measures and conditions of
entanglement have been applied to the study of several linear
devices, the beam splitter, the parametric amplifier and the
linear phase-insensitive amplifier. It is important to study in
detail the SU(1,1) IS with quantum information criteria, and
these ideas may be considered as topics for future research.

The SU(1,1) Lie algebra is used in studying the
adaptation of Kieu’s hypercomputational quantum
algorithm [93] and for quantum computation and
tomography [94]. The SU(1,1) dynamical algebra is
selected, because it possesses the necessary characteristics
in realizing the hypercomputational quantum algorithm.
In addition, it admits different kinds of CSs and various
kinds of representations. Some realizations of SU(1,1)
Lie algebra such as Holstein–Primakoff and one-mode
nonlinear realization are used for studying the quantum
hypercomputation [93]. Moreover, the approximation
correspondence between the SU(1,1) Lie algebra and finite
elements of quantum gates are derived [94].

7. Conclusions

In this work, we have studied the SU(1,1) Lie algebra
IS. The generalized CSs associated with the SU(1,1) Lie
algebra have been reviewed. The eigenvalue problem satisfied
by the IS has been solved. The solution is related to the
Pollaczek polynomials. Some realizations for our results of
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SU(1,1) group IS have been investigated. The IS are a wider
class of other SU(1,1) group states. Some bosonic states are
considered as special cases of these states.

We have discussed numerically some properties of
these states. Several moments have been calculated. Some
nonclassical properties such as sub-Poissonian behaviour,
particle number distribution and squeezing are investigated.
The correlation function g(2) has been investigated
numerically and it indicates that the IS exhibit sub-Poissonian
behaviour. Depending on the parameters of these states large
areas of squeezing appear, which are considered as a measure
of nonclassicality.
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