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Introduction to discrete calculus

When we consider that all the algebraic operations are mod p, p-a prime
number, the set of integers f0; 1; :::; p� 1g form a commutative group with
respect to summation and f1; :::; p� 1g form a group with respect to multi-
plication.

a) a � b = c 2 Zp

b) exists a e neutral element a � e = e � a = a;

c) For any a exists inverse elements a�1 : a � a�1 = a�1 � a = e;

where � means summation or multiplication. Such structure is called an
algebraic �eld, which in this case coincides with Zp .
Let us consider a �nite (p-)dimensional Hilbert space H and choose fjnig as
an orthogonal basis, here n = 0; :::; p� 1. Two basic operators X and Z are
introduced as

Zjni = !(n)jni ! Z =

p�1X
n=0

!(n)jnihnj;

Xjni = jn+ 1i ! X =

p�1X
n=0

jn+ 1ihnj; :

where

! = e
2�i
p ; !(n) = !n;

p�1X
n=0

!(nk) = p�k;0:
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Due to the above de�nitions it is easy to see that

ZXjni = !(n+ 1)jn+ 1i; XZjni = !(n)jn+ 1i;

so that
ZX = !XZ;

and fZ;Xg form the so-called "generalized Pauli group". It is clear that
Zp = Xp = I, i.e. X, Z are cyclic operators.
There exists another (dual) basis fj~nig where Z acts displacing by one

any basis state
Zj~ni = j]n+ 1i: (1)

In order to get an explicit expression for the states j~ni in terms of the basis
fjnig, we will write

j~ni =
p�1X
n=0

an;kjki

and applying Z is possible to �nd an equation for the coe�cients an;k, this
application is obvious

Zj~ni =
p�1X
n=0

!(k)an;kjki

and the expansion of the right-hand side of (1) is rewritten as

j]n+ 1i =
p�1X
n=0

an+1;kjki;

obtaining the equation an+1;k = !(k)an;k. The solution has the form an;k =
c!(nk), getting the value of c from the normalization condition

j~ni = c

p�1X
k=0

!(nk)jki ! h~nj~ni = 1! c =
1
p
p
:

The operator which maps from the basis jni into the dual basis j~ni,

j~ni = F jni; (2)

is the �nite Fourier transform

F =
1
p
p

p�1X
k;n=0

!(nk)jnihkj
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and it satis�es the unitarity property FF y = F yF = I.
When p 6= 2 the square of this operator is

F 2 =
1

p

p�1X
k;n;k0=0

!(k(n+ k0))jnihk0j =
p�1X
k

j � kihkj = P;

here P is the parity operator, which leads to

F 4 = P 2 = I; (3)

otherwise (p = 2) F 2 = I.
Here, the abcence of the parity operator is a consequence of a structural

di¤erence between p = 2 and odd primes. This di¤erence will appear several
times from now on along the whole articule, we will point out whenever it
needs.
The action of X in the dual basis is

Xj~ni = 1
p
p

p�1X
k=0

!((k � 1)n)jki = !�(n)j~ni;

i.e. the operator X is diagonal is diagonal in the dual basis j~ni and its eigen-
values are related to the eigenvalues of the Z operator through conjugation.
Using (2) we can �nd the relation between X and Z via the �nite Fourier
transform, let us consider the odd prime case, �rstly,

X = F

p�1X
n=0

!(�n)jnihnjF y

= FP

p�1X
n=0

!(n)jnihnjPF y;

considering (3)
X = F yZF: (4)

Due to both !(�n) = !(n) and F 2 = I when p = 2, the result (4) has the
same form for all the primes.
The operators Z and X satisfy the following important properties:
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Tr(XnXym) = p�mn; T r(ZnZym) = p�mn; T r(ZnXm) = p�m0�n0:

The collection of operators D(�; �) = �(�; �)Z�X�, where � is a phase,
form an operational basis in H and any operator f̂ can be expanded as

f̂ =

p�1X
�;�=0

f�;�D(�; �): (5)

These operators are orthogonal

Tr
�
D(�; �)Dy(�0; �0)

�
= p��;�0��;�0 ;

helped with this property, the coe�cients in (5) can be found as

f�;� =
1

p
Tr
�
f̂Dy(�; �)

�
:

This means that we can map f̂ 2 Op(H) into f�;� which is a function of
discrete variables de�ned on a discrete 2-dim spaceM . The coordinates (�; �)
inM are given by the powers of Z andX, respectively. Due to the periodicity
of Z and X the space M is di¤eomorphic to a bidimensional discrete torus.
The action of the operator D(�0; �0) on an arbitrary point (�; �) on the
manifold is just the displacement (�+�0; � + �0), for this reason D(�0; �0) is
called a displacement operator.
To ilustrate how this mapping is performed let us get the discrete repre-

sentation of jki, it is

jkihkj $ f�;�(k) =
1

p
Tr
�
jkihkjDy(�; �)

�
=

=
1

p
��(�; �)!(�k�)��;0;

as a disadvantage of that result is its non-reality.
A problem which arises using (5) is that it is not covariant under the

application of the displacement operator

~f = D(; �)fDy(; �) =

p�1X
�;�=0

f�;�!(� � ��)D(�; �):
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But it is easy to solve and a covariant operator is given by the following
construction

�(�; �) =
1

p

p�1X
;�=0

!(�� � �)D(; �); (6)

this operator also satis�es an orthogonality relation

Tr
�
�(�; �)�y(�0; �0)

�
= p��;�0��;�0 :

It means that (6) (which we will call kernel) forms an operational basis, as
well,

f =

p�1X
�;�=0

Wf (�; �)�(�; �)$ Wf (�; �) =
1

p
Tr
�
f̂�(�; �)

�
: (7)

Let us impose the condition f y $ W �
f (�; �) so

f y =

p�1X
�;�=0

W �
f (�; �)�

y(�; �)

therefore � = �y, i.e. � has to be a Hermitian operator. This also gives us
a phase condition

�y =
1

p

p�1X
;�=0

!(�� � �)��(�;��)!(��)ZX�;

so
��(�;��)!(��) = �(; �): (8)

A particular solution of (8) is

�(; �) = !(�2�1�);

for odd primes and, for p = 2,

�(; �) = (�i)�� :

As we asked before for, this operator is covariant

D(�; �)�(�; �)Dy(�; �) = �(�+ �; � + �):
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The obvious consecuence of the covariance property, and the motivation be-
hind, is that the symbol of a transformed operator

f̂ = D(�; �)fDy(�; �);

has the form

W bf (�; �) =
1

p
Tr(D(�; �)fDy(�; �)�(�; �))

= Wf (�� �; � � �):

The normalization condition for (6) is immediately obtained

Tr�(�; �) =
1

p

p�1X
;�=0

!(�� � �)�(; �)Tr(ZX�) = 1

because �(0; 0) = 1 for any prime p. This result leads to

Trf =
p�1X
�;�=0

Wf (�; �):

Note that if

f =

p�1X
�;�=0

f�;�D(�; �);

then the symbol of the operator f can be obtained using the coe�cients of
the operational expansion

Wf (�; �) =
1

p

p�1X
�;�=0

f�;�Tr (D(�; �)�(�; �)) (9)

=
X
�;�=0

f�;�!(��� + ��):

The trace condition for the multiplication of two given operators is

Tr(fg) = p

p�1X
�;�=0

Wf (�; �)Wg(�; �):
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A convenient representation of (6) for several calculations is

�(�; �) =
1

p
D(�; �)

p�1X
;�=0

D(; �)Dy(�; �):

As an interesting property of the displacement operator we can point out that
the equally weighted summation over the whole set of themselves results in
the parity operator

1

p

p�1X
;�=0

D(; �) =
1

p

p�1X
k=0

p�1X
;�=0

!((k + 2�1�))jk + �ihkj = P;

this result is obtained for p 6= 2, actually.
To get a better idea about the Wigner function let us see two examples.

The Wigner fuction corresponding to the state jni has the form

Wjnihnj =
1

p

p�1X
;�=0

!(�� � �)Tr (jkihkjD(; �))

=
1

p

p�1X
;�=0

!(�� � �)�(; 0)!(n)��;0 = ��;n;

it is the line � = n. The second example is the symbol corresponding to Z,

WZ =
1

p

p�1X
;�=0

!(�� � �)Tr(ZD(; �))

=

p�1X
;�=0

!(�� � �)��;0�;�1 = !(�);

this symbol depends only on �.

Discrete phase space geometry

In the discrete space Zp � Zp can be introduced the concept of line in a
similar way as in the continuous plane case, so all the points (�; �) 2 Zp�Zp
which satisfy the equation
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a�+ b� = c;

where a; b; c 2 Zp are �xed, form a line. Moreover, two lines

a�+ b� = c

a0�+ b0� = c0;

with given a; b; c; a0; b0; c0 2 Zp, are called parallel if they have no common
points and it implies the relation among the coe¢ cients

b

a
=
b0

a0
! ba0 = ab0:

Also, if the lines are not parallel they cross each other in a single point and
its coordinates are

� =
c0 � b0b�1c

a0 � ab0b�1
; � =

c0 � a0a�1c

b0 � a0a�1b
:

It is called ray a line which pass over the origin and its equation has the form

� = m�; or � = 0:

Of course, there are p�1 parallel lines to each one of the p+1 rays, therefore
the total number of lines is p(p+1). The collection of p parallel lines is called
foliation.

Displacement in the discrete phase space

Consider a ray �m: � = m� (or � = 0): (�;m�) or (0; �) and let us
label D(�; �) using the points of this ray: D(�;m�) or D(0; �). Observe that
[D(�;m�); D(�0;m�0)] = 0, i.e. the displacement operators corresponding to
the same ray commute. Let us associate the ray �m with the eigenstates of
D(�;m�), m is �xed.
To show how these operators are, the Z3 case is written explicitly for all

the possible rays

� = 0 ! Z;Z2

� = � ! ZX;Z2X2

� = 2� ! ZX2; Z2X4

� = 0 ! X;X2:
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The set fZ�Xm�g with �xed m has p di¤erent eigenvectors j nmi, it
means

D(�;m�)j 0mi = ei�
0
mj 0mi;

where j 0mi is the state associated with the ray �m. Let us de�neD(; �)j 0mi =
j	mi, observe that

D(�;m�)j	mi = !(�� �m�)ei�
0
mD(; �)j 0mi

= !(�(� �m))ei�
0
mj	mi;

this means that j	mi is an eigenstate ofD(�;m�) with eigenvalue !(n�)ei�
0
m,

here n = � �m. So, there are p displacement operators D(;m + n) for
which !(n�) has the same value becausem and n are �xed. This displacement
operator can be divided into two parts, the �rst one is the displacement
operator associated with some ray and the second one corresponds to Xn,

D(;m + n) = !(�2�1n)D(;m)Xn:

Note that the operators D(;m + n) are labeled with all the points in the
line � = m� + n, which is parallel to the ray � = m�. Now, we can de�ne
the state

j nmi = Xnj 0mi;
we already know that the state j 0mi is put in correspondence to the ray
� = m�, while j nmi is associated with the line � = m�+ n, the application
of the displacement operator on j nmi is given by (??). As an additional
property of those states we can check that the scalar product of two states
with indeces belonging to the same foliation is

h nmj n
0

mi = �n;n0 ;

i.e. they are orthonormal.

Rotations in the phase space

Let us introduce the operator V acording to the following conditions

V Z�V y = 'Z�X�; (10)
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where ' is a phase factor which will be determined below and

[V;X] = 0: (11)

Due to (11) V is diagonal in the basis fj~nig, it means

V =

p�1X
n=0

cnjenihenj: (12)

We have to determine the coe�cients cn, in order to get them, let us make
use of (12) to calculate explicitly the right-hand side of (10) in fj~nig

V Z�V y =

p�1X
n;n0=0

cn0c
�
njen0ihen0jZ�jenihenj

=

p�1X
n=0

cn+�c
�
njn̂+ �ihenj;

with c0 = 1. The operators at the left-hand side of (10) written in the same
basis as before have the form

Z�X� = Z�X�

p�1X
n=0

jenihenj = p�1X
n=0

!(�n�)jn̂+ �ihenj;
leading to an equation for cn

cn+�c
�
n = '!(�n�);! jcnj2 = 1: (13)

To solve this we have to separate the equation into two cases, when p 6= 2 a
particular solution to this equation is

cn = !(�2�1n2); c� = ' = !(�2�1�2)

and �nally we can write

V =

p�1X
n=0

!(�2�1n2)jenihenj ! V Z�V y = !(�2�1�2)Z�X�:

According to that we get

V mZ�(V y)m = !(�2�1m�2)Z�Xm�: (14)
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From the geometric point of view powers of V generate a � component from
the point (�; 0)

V m : (�; 0)! (�;m�) : �0 ! �m;

it means that the action of V m produces rotations from one ray to another
one.
If p = 2 the equation has no modi�cation but because there is no 2�1 we

have to write the solution in a di¤erent manner

cn+1c
�
n = '!(�n); c0 = 1; c1 = ' = �i;

and (10) reads

V ZV y =

�
1 0
0 i

�
Z

�
1 0
0 �i

�
= iZX:

Easily, we can check that V p = I is a cyclic group, therefore we cannot reach
(0; �) from (�; 0). Anyhow, we already know the solution and it is performed
through the Fourier transformX� = F yZ�F , i.e. jeni = F jni as it was de�ned
at (2).
Now, let us see the action of V in the Hilbert space

V j nmi � V D(�;m�)V yV j nmi
= !(�2�1 (m+ 1)�2)Z�X(m+1)�V j nmi;

so then
D(�; (m+ 1)�)[V j nmi] = !(n�)ei�

0
m [V j nmi];

now we can associate the states V j nmi to the states of the foliation where
the ray � = (m+ 1)� belongs to. As an ilustration the aplication of V 2 on
the ray �0 gives

�0
V! �1

V! �2| {z }
V 2

;

so V m maps from the ray �0 into the ray �m, for this reason it represents a
rotation.
To introduce another operator with rotation properties similar to V , let

us de�ne two lines to be orthogonal if the states corresponding to these ones
are related via the Fourier transform

jni F! F jni;
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there exists an operator U jeni = FV jni so its application rotates the state jni
(dual to jeni) and transforms this rotated line into an orthogonal one. This
operator can be obtained from V as

U = FV F y =

p�1X
k=0

c�njnihnj; (15)

of course, UZU y = Z. The action of U on the operator X can be obtained
using the operational relation in (15) and the relation (4)

UXU y = F (V ZV y)yF y = '�ZyX; (16)

so
UZ�Xm�U y � Z(1�m)�Xm�;

and this operator changes the slope of the original ray to give another one

� = m�
U! (1�m)� = m�;

this transformation also represents rotations. This formula reminds us of
the imposibility to reach the ray � = 0 through V , with U this problem
disappears but it cannot reach the ray � = 0. With both U and V we can
tranform from any ray to any other.

A general picture

Let us associate the ray �0 (it is the set of all the points (�; 0)) with the
eigenstate of the operator Z�, so that all the eigenvalues are 1, it is unique
and corresponds to the ground state Z�j0i = j0i. In a similar way, the states
jni = Xnj0i are associated with the parallel lines � = n on the phase space.
The ray �m $ � = m� corresponds to the state V mj0i = j 0mi, so that
all the eigenvalues of D(�;m�) are 1. Finally, gluing last both associations,
j nmi = Xnj 0mi and the line � = m� + n is in conection.
The Wigner function of the state j nmi is calculated quite easy. The commu-
tation between X and V allows us to treat the application of each operator
independently. The covariance property of the Wigner function gives

Wj n0 ih n0 j (�; �) = WXnj0ih0j(Xy)n(�; �)

= Wj0ih0j(�; � � n) = ��;n;

12



and

Wj 0mih 0mj (�; �) =
1

p

p�1X
;�=0

!(����)�(; �)!(2�1m2)h0jZX��mj0i = ��;m�:

This means that the Wigner function of j nmi has the form of the line � =
m� + n, precisely.

0.1. Mutually unbiased bases

When the inner product of basis elements of two di¤erent bases has the
value

jh n0m0j nmij =
1
p
p
; (17)

we say that those bases are mutually unbiased.
Here we show that the bases associated to di¤erent foliations are mutually

unbiased, and for this reason, the rotations over the discrete phase space
become an important issue in this task.
The inner product (17) can be rewritten as

h0j(V y)m(Xy)nXn0V m0j0i (18)

due to V and X commute, and as a consequence, their powers, as well, the
above equation gets the form

h0jXn0�nV m0�mj0i =
p�1X
k=0

cm
0�m

k hn� n0j~kih~kj0i;

considering that hn � n0j~ki = !(k(n � n0))=
p
p and h~kj0i = 1=pp, (18) gets

the form

h0j(V y)m(Xy)nXn0V m0j0i = 1

p

p�1X
k=0

cm
0�m

k !(k(n� n0)):

Let us introduce the de�nition

	n;n
0

m;m0 �
p�1X
k=0

cm
0�m

k !(k(n� n0))
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the square of the absolute value of 	n;n
0

m;m0 can be calculated easily

j	n;n
0

m;m0j2 =
p�1X
k;k0=0

cm
0�m

k c�m
0�m

k0 !((k � k0)(n� n0));

changing the index k � k0 = l, the above formula is rewritten as

p�1X
k0;l=0

cm
0�m

k0+l c
�m0�m
k0 !(l(n� n0));

substituting (13)

p�1X
k0;l=0

'm�m
0
(l)!(�lk0(m�m0))!(l(n� n0))

=

�
p2�n;n0 m = m0

p
Pp�1

l=0 '
m�m0

(l)!(l(n� n0))�l;0 m 6= m0 ;

giving the two possible results

1

p2
j	n;n

0

m;m0j2 =
�
�n;n0 m = m0

1=p m 6= m0

the �rst one corresponds to the inner product of states belonging to the same
foliation, i.e. same basis, and in the second one we can observe that di¤erent
foliations correspond to di¤erent mutually unbiased bases (MUB).

Reconstruction procedure

Let us calculate the average of the density matrix on the state corre-
sponding to the line � = m� + n

h nmj�j nmi = h0j(V y)m(Xy)n�XnV mj0i;

using the expansion (7) for the density matrix and applying (14) we rewrite
the above expression as

1

p

p�1X
p;q=0

W (p; q)

p�1X
;�=0

!(p� � q)!(�2�1�)

�!(�2�1m2)hnjZX��mjni;
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as we have done before, we are considering the odd prime case. Taking into
account that

hnjZX��mjni = ! () �m;�

and after few algebra we get

1

p

p�1X
p;q=0

W (p; q)

p�1X
=0

!((mp� q) )! (n)

=

p�1X
p;q=0

W (p; q)�q;mp+n:

This means that

h nmj�j nmi =
p�1X
�;�=0

W (�; �)��;m�+n;

which is a general requirement for the Wigner function. It still needs to be
proved the same result for the line � = 0, it can be done using the dual basis

h~lj�j~li = hljF y�F jli

=
1

p

p�1X
�;�=0

W (�; �)

p�1X
;�=0

!(�� � �)�(; �)hljXZ��jli;

after few algebra, the average value is

h~lj�j~li =
p�1X
�;�=0

W (�; �)��;l:

The summation of the values of the Wigner function along a line gives the
probability that the system will be found to be in the state associated to this
line, indeed.
Let us call the average h nmj�j nmi = f(m;n) tomogram, and recall that

f(m;n) =
1

p

p�1X
�;�=0

W (�; �)��;m�+n =
1

p

p�1X
�=0

W (�;m� + n)
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applying the relation (9) to the density matrix, the right-hand side of the
above formula is changed into

p�1X
m0;n0=0

�m0;n0!(nm
0)�n0;mm0 =

p�1X
m0=0

�m0;m0m!(nm
0);

�nally,

f(m;n) =

p�1X
m0=0

�m0;m0m!(nm
0):

Written in this form it is now possible to invert the formula in order to get
the elements of the density matrix. Multiplying both sides of (??) by ! (�nk)
and adding over the whole set Zp

p�1X
m0;n=0

�m0;m0m!(n(m
0� k)) = p

p�1X
m0=0

�m0;m0m�m0;k =

p�1X
n=0

f(m;n)!(�kn); (19)

we get the desired elements

�k;km =
1

p

p�1X
n=0

f(m;n)!(�kn);

or, changing the second index, in another form

�k;l =
1

p

p�1X
n=0

f(lk�1; n)!(�kn);

with k 6= 0. Following this recipe almost all the elements of the density matrix
can be reconstructed, the elements �0;l are not reached.
To reconstruct �0;l we have to measure the element

f (l) = h~lj�j~li = hljF y�F jli = 1

p

p�1X
�;�=0

W (�; �)��;l;

applying (9) and after few algebra

f (l) =

p�1X
n0=0

�0;n0!(�ln0);

16



following a similar procedure than above (19) we obtain the left elements

�0;n =
1

p

p�1X
k=0

f(k)!(kn):

This procedure allows us to get the complete density matrix information from
di¤erent averages which are available due to some experiments.
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