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Orthogonality:

hs%mﬁimm_guf; (A.15)

Differential equation:
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[Re p>—1] (Schradinger [9]).
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[Rea>—1, Reb>0] (Erdélyi et al. [16]).
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_ﬂcEn 7. UNCERTAINTY RELATIONS FOR ANGULAR MOMENTUM' _
1. The Role of the Uncertainty Relations

Heisenberg’s {1] discovery of the uncertainty relations for position and
momentum measurements in quantum mechanics played a fundamental role
in clarifying the physical content of quantum mechanics (see Refs. [2] and
[3]). Using the terminology devised by Dirac, one says that quantum
mechanics considers two types of observables: commuting classical-type
observables (“c-numbers”) and quantal-type observables (“g-numbers”), the
latter obeying noncommutative, but associative, algebraic rules. The basic
quantal observables for a particle—position x and momentum p—are
postulated in quantum mechanics to satisfy the Heisenberg? ooSE:S:o:

1We thank Professor Michael Reed and Dr. Michael Nieto for discussions on the content of
this Topic.

?Alred Landé has mentioned that in point of fact it was Born, net Heisenberg, who firsl
wrote oul these commutation rules in their final form (Heisenberg having found the diagonal
clements); bul the concept (il not the result) is indisputably Heisenberg’s. Hence, we stick to
the common usage. The historical context [or the uncertainty relation is discussed in the
cloquent Heisenberg memorial lecture by Mehra [3a.
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rule (Heisenberg [4], Born et al. [5]):
[pi,x;]=—ih8, 1. (5.7.1)

The existence of a nonvanishing commutator between two observables
implies a restriction on the possibility of preparing quantal states in which
the two observables simultaneously take definite values. The Heisenberg
uncertainty relation for position and momentum measurements,

ApAx,=3h, (5.1.2)

gives a precise statement of this restriction, which asserts an inequality
relating the two dispersions, A p; and Ax;, that occur for measurements on a
physical system in the state |¢/):

(Ap Y=l = (D) 1),
(Ax,)’= (] (= (x)) 1¥)s (5.7.3)

where the expectation value, ( \_v of an observable 4 for a system in state
[v) is defined by (A)= (y]A[).

From the Heisenberg uncertainty relation, Eq. (5.7.2), it is clear that a
nom_:.oz measurement of great accuracy, having small dispersion Ax~¢
(Ax=0 is both physically and mathematically excluded), necessarily re-
quires a very large uncertainty Ap~h/e for a simultaneous momentum
measurement. It follows that in quantum mechanics—in sharp contrast to
classical. mechanics—there can be no meaning to such a concept as “the
path of a particle.” Bohr’s Principle of Complementarity, formulated at the
Solvay Conference? of 1927, was an attempt to capture the qualitative
implications of the uncertainty relation. This principle asserts that atomic
phenomena cannot be described with the completeness demanded by classi-
cal mechanics; some of the elements in a classical description (particle
versus wave nature—that is, position versus momentum aspects) are actu-
ally mutually exclusive, but these complementary elements are all essential
in the description of the phenomena. This principle is a basic tenet of the
Copenhagen interpretation of quantum mechanics, which is the standard
viewpoint of essentially all physicists (see Jammer [6]).

"The general definition of the dispersion A 4 of an observable A measured in the state [} ) is
(AA=(P)(A—(ANYP). where (A)=(y|A]¢). Note then that, in general, (A) is a real
number that depends on ¢, and A4 is a nonnegative real number that depends on . It is
customary in the physics literature to suppress this (functional) dependence on the state.
However, note that in"Eq. (5.7.2) the right-hand side (the minimum value A /2) is independent
of the state [{').

2This conference marked the beginning of :_m Einstein—-Bohr controversy over quantum
mechanics (Robertson {3, pp. 143ff.]).
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The uncertainty relations are accordingly one of the essential elements in
interpreting and understanding the physical content of quantum mechanics
(see Note 1). The purpose of the present Topic is to discuss in a precise
mathematical way the uncertainty relations for angular momentum observa-
bles. This is clearly of intrinsic interest, but it is a task of particular
importance, since the literature contains many confusions and errors. To do
this properly it is useful to review first the situation for position—momentum,
to which we now turn.

2. Résumé of the Position—Momentum Uncertainty Relation

The essential fact to recognize in any attempt to discuss the uncertainty
relation [Eq. (5.7.2)] with precision is that the operators (observables)
entering Eqs. (5.7.1) and (5.7.2) are unbounded: Both p=p, and x=x; have
the real line as spectrum. It is a_consequence.of the ,_,Omv_:N&:n:_:mQ

:ﬁo:u:_ that unbounded o_unz:oa can be defined, at best, only on a dense
et of Hilbert space.. This unfortunate fact of life is the source of much
difficulty (and suffering) in quantum physics and a chief stock-in-trade of
mathematical physics (see Notes 2 and 3).

There is an elegant way to avoid some, but not all, of these difficulties in .

the case at hand. This is to use Weyl’s idea of replacing the unbounded
operators p and x by the unitary (and, hence, bounded) operators defined
by

U=exp(iAp/h),
V=exp(ipx/h). (5.7.4)

One thereby obtains the Heisenberg commutation relation in the Weyl form
(8, p. 273]:

UV=elir/Myy. (5.7.5)

Operators in the Weyl form do not in general suffice for the purposes of
physics (U and ¥, for example, are technically not observables). To justify
the (standard) physicist’s manipulations to follow, we shall assume that
there exists a (dense) domain invariant under p and x, and in the domains
of both.

To establish the uncertainty relation, Eq. (5.7.2), let us :x an arbitrary
(normalized) Hilbert space vector |} and consider the operators P and Q

!The Toeplitz-Hellinger theorem (Reed and Simon [7]) asserts that a symmetric operator [an

operator A that satisfies (A, )= (¢, AY)] defined on all vectors  in a Hilbert mvmon is

necessarily bounded. The term “Hermitian” is used interchangeably with “symmetric.”
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defined by!

P=p—(¢|pl¥),
Q=x—(¥|x|¥). (5.7.6)

Applying the Schwartz inequality to the vectors P|Y) and Q|¢), one finds

(PYPYIQUQY)=[( PYOY)I*. (5.1.7)

To evaluate the right-hand side in this relation, we note that

PP = (POl )]
=3CULP, Q)+ (Y PQ+ QP
=P, QP> 42, (5.7.8)

since [P, Q)= —ihl.

This result establishes the uncertainty relation?.of Eq. (5.7.2), since the
dispersion (Ax)? is given by (Ax)?=(Q¢|Q¥), and, similarly, (Ap)Y =
(PY|PY). |

It is interesting to pose the question: What is the class of states for which
the uncertainty relation actually achieves the minimum? These are the
minimum uncertainty states that were defined® by Schrodinger [10] and that
play a major role in quantum optics (Glauber [11], Klauder and Sudarshan
[12], Louisell [13]). There are two conditions to be fulfilled: (a) For the

Schwartz inequality [Eq. (5.7.7)] to be an equality tequires that the vector

P|y) be a multiple of the vector Q|¢); that is,
Pl¥)=AQl¥), AEC; (5.7.9)
and (b) for Eq. (5.7.8) to be an equality requires that
(¥I(PQ+QP)|y)=0. (5.7.10)
Consider Eq. (5.7.10) first. Using PQ=QP—ih1 and then QP=PQ+ihl,

'Observe that these operators are functionals of y (see footnote 1. p. 308).

>This conclusion is inescapable for p and x Hermitian operators defined on a dense subset of
a Hilbert space with the assumed domain properties. (The proof we have given is essentially
that of von Neumann {9, pp. 230ff.]. It follows that an eigenvector of p or x cannot be a vector
in Hilbert space, since such an eigenvector would satisfy PlY)=0or Q|§)=0, thus contradict-
ing Eq. (5.7.8). The conclusion is: The commutation relation (5.7.1) is a valid operator identity
only when applied to vectors in a common dense invariant domain of Hilbert space; it is clearly
invalid when acting on eigenvectors of p or x. (This is discussed further in Section 3)

3Von Neumann [9, p. 237] attributes these states to Heisenberg.
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we find that a minimum uncertainty state must satisfy the two conditions
expressed by

WIPQIYY=—ih/2  and

Using néxt the requitcment (5.7.9), we find the relations'

(VIQP|YY=ih/2. (5.7.11)

(Ap)=—ihr/2, (Ax)’=in/2A. (5.7.12)
Note that we recover from these two relations the minimum uncertainty
relation

ApAx=h/2, (5.7.13)
as well as the relation
Ap/Ax=—il\. (5.7.14)

Conversely, these two relations imply Egs. (5.7.12).
Using Eq. (5.7.14) in Eq. (5.7.9), we now obtain the following equation
that must be satisfied by a minimum uncertainty state | ):

[(ap)~'P=i(ax)"Q]j)=0. (5.7.15)

Using the Schrodinger realization of the operators p and x [ p— —ih(3 /0x),
and x is the multiplication operator by x], we can integrate the relation
(5.7:15) to obtain the following generic form for every position~momentum

minimum uncertainty state, Y(x)={x|p):

$(x)=[7h(Ax/Ap)] *exp| — ,N.Mwim.\mwwﬂwmﬁvx . (5.7.16)

At first glance this result is a curious one, since ( p), (x), and Ax/Ap
are properly to be thought of as functionals of y itself. On the other hand,
the relationship is self-reproducing in the sense that one may set (p)=
hb(— o <b<w), (x)=a, (—oo<a<ow), and A(Ax/Ap)=p (0<p<oo) in
the right-hand side of Eq. (5.7.16), and then calculate py direct integration
the values { p)=bh, (x)=a, and hdx/Ap=p, using\W(x)=y(a, b, u; x).
This result shows that, in fact, |{) is to be interpreted as-a_three-parameter

'Note then that we must have A=ig(y), where 0<g(y)<oo for all states ¢ in the Hilbert
space of states of a physical system (see footnote I, p. 308).
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family of states

(x—a)’

W(a, b, p; x)=(mp) *exp| — -

+ibx ||, (5.7.17)

where the real parameters a, b, and g may assume any values such that
—<a<oo, —0<bh<oo, and 0<p<oo.

Since the minimum uncertainty state (5.7.17) is generic— that is, it refers
to no particular (one-dimensional) physical system—it is valid for every
such physical system. Each member of this family is 2 minimum uncertainty
state for any physical system and may be realized for that system by
“suitable (position—momentum) measurements.

The family of minimum uncertainty states (5.7.17) is in one-to-one
correspondence with the ground states (lowest energy states) of a family of
harmonic oscillators. [This statement is to be contrasted with the less
carefully phrased one often found in the literature, which (misleadingly)
asserts that the states (5.7.17) are “harmonic oscillator states.”]

To see more clearly the relationship of the minimum uncertainty states
(5.7.17) to the harmonic oscillator, we operate on Eq. (5.7.15) from the left
with 2m)~'[Ap)~'P+i(Ax)™'Q). The result is

K2
2mp

[¥(a,b,pn)).

(5.7.18)

,.._w.glgv~+mlm?lnv~ [¥(a,b,p))=
2m 2mp? e

The operator in the left-hand side of this equation is the Hamiltonian for a
particle of mass m in a harmonic oscillator potential centered at x=a and
observed from a reference frame moving in the x-direction with momentum
hb. Moreover, the frequency of the (classical) motion is w=%/mp, so that
the energy of the oscillator {right-hand side of* Eq. (5.7.18)] is hw/2. Thus,
|¥(a, b, ) is the ground state of a harmonic oscillator with fixed physical
characteristics (as determined by the mass m and the frequency w=~A/mp),
which has equilibrium position x=a and is observed in a moving reference
frame having momentum Ab. . .

It is important to note that each member of the family of minimum
uncertainty states {|{(a, b, p):0<p'<oco} is a minimum uncertainty state
of the oscillator described above with mass m and frequency w=rh/my’;
only one member (p'=p) of the family coincides with the ground state of
the oscillator with physical parameters (m, p). (Coherent states for a particu-
lar oscillator are a subset of the position—momentum minimum uncertainty
states.) '
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We refer to the literature for further discussion of minimum uncertainty
states and coherent states for other physical systems (Nieto and Simmons
[14], Perelomov [15]; a recent review is by Santhanam [15a)).

u.C:omnmmsa\zm_mzc:m3~>=m=_m=. 32:@::_5_5443
Dimensions : .

It is customary (in textbook treatments) to discuss the uncertainty rela-
tions for angular momentum by considering in effect only the special case of
the subgroup of rotations generated by the orbital rotation operator L.
Such a restriction limits the discussion essentially to (two-dimensional)
planar rotations, a very special case indeed, which (as will be shown below)
grossly distorts the actual three-dimensional situation. Since the treatment
of rotations in two dimensions is, however, important in its own right, and,
moreover, illustrates rather clearly certain typical technical difficulties, it is
helpful to discuss this case first.

We begin therefore with the orbital rotation operator L, defined by

ll.b{lbl
L= NAR_?N xwmx_ v, (5.7.19)

and seek to determine the position variable that is conjugate to L,. Let us
define the angle ¢ by

¢=tan"'(x,/x,); | (5.7.20)

that is, we take ¢ to be the angle of rotation in the (x,—x,)-plane
measuring the position x=x,é, +x,&, of a particle initially at the point
(r,0), where r=(x?+x3)%.

One can verify—at this stage heuristically—that L, and ¢ apparently do
satisfy the desired canonical commutation rule

[L;,¢]=~i1, : (5.7.21)
since L, has the Schrodinger realization

L,=—i(3/3¢). (57.22)

'Angular momentum states which minimize the uncertainty relation AJ,AJy=|(J3)|/2 have
also been called “minimum uncertainty states” and discussed in the literature (see Bacry [15b].
and references cited there). We are concerned here, however, with states minimizing the

_uncertainty for an operator and its conjugate observable, as in the prototype Heisenberg

relation.
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This conclusion agrees intuitively with one’s physical understanding of
planar rotations, and it agrees with the Dirac quantization prescription
whereby the Poisson bracket (PB) is mapped into the quantum mechanical
commutator:'

ﬁhu.&.umwl?&vl_ﬁhu'%”—.

q.,rm problem one faces in a precise treatment is to postulate Eq. (5.7.21) as
valid, and then to determine the exact sense in which the operators L, and
ﬂ|&.§2~m§ the appropriate space on which they act—are to be interpreted.

That this is not simply a matter of overly fastidious mathematical taste
can be seen from-the following “fallacy”: Taking matrix elements of Eq.
(5.7.21) between eigenstates of L,, one obtains the result (m’—m){(m'|$p|m)
=8,m» Which is absurd, since it implies (for m=m’) that 0=1. This
“fallacy” has been known since the beginning of quantum mechanics
(Jordan [16]) and is continually being rediscovered (for example, see
Perlman m.:m Troup [17]). The resolution of this situation is not to deny the
commutation rule (as in Ref. [17 ]), but, as emphasized above, to find the
precise conditions for its validity (Kraus [18)).

We begin by observing that L, is unbounded, and hence defined only on
a m_nsmn set of Hilbert space (see Note 2). Next we observe that the most
suitable function space for the present problem is the space AC[0,27) of
absolutely continuous square-integrable functions on the interval [0,27)
Amnw Note 4). For such a space the fundamental theorem of the calculus is
valid, and for each function f in the space there exists a derivative f” almost
everywhere. The operator L, is then defined as the operator acting on
functions fEAC[0,27) given by ,,

_ a _
Ly: f(¢)~ ihﬁmw. fEACI[0,27), f(0)=f(2m)=0.

(5.7.23)

Here .:5 aon._as of definition for the operator L, (denoted D) is the set of
?zn:o.nm defined by D={ fEAC[0,27): f(0)=f(2m)=0}. The domain 9 is
dense in AC[0,27), and therefore Eq. (5.7.23) constitutes an adequate
definition for L,.

If we interpret the operator ¢ as the multiplication operator in AC [0, 27
defined by _

$: f(¢)—df(9), (5.7.24)

_Wmﬂz_ that L, in Eq. (5.7.19) is in units of A, so that these results are dimensionally in
accord.
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then ¢ is a bounded operator, defined everywhere. In particular, the domain
of the product of the two operators, $L, and Lyp, coincides with the
domain . Thus, it follows that the commutator given by Eq. (5.1.21) is
well-defined on the domain D, which is dense in AC[0,2).

This is quite reassuring, but it is far from the end of the story! There are

several problems yet to be discussed:

(a) The operator L,, although indeed well-defined on ) and Hermitian
on 9, is nor self-adjoint. This is important physically, since the spectral
theorem (which validates quantum mechanical applications) applies only to
self-adjoint operators (Reed and Simon [7], Weyl [8], von Neumann [9]).

(b) The domain © is not physically satisfactory, since the boundary
condition [¢(0)=¢p(27)=0] spoils the rotational symmetry of the physical
problem.

(¢) The operator ¢ is also physically unsatisfactory, since it fails to be
cyclic at the boundary. )

Let us consider the problem of self-adjointness, item (a) above. The
operator L, is sufficiently simple that one can determine the adjoint' L}
quite directly without using the complicated analysis developed by von
Neumann for the general case.? Consider the defining relation for the
adjoint operator L¥. For f€®(L,) and g€(L}), we have (using an
integration by parts)

(Lyf.g)—( [, Lig)=f(2m)g(2m)—/(0)g(0)=0.

Since fEM(L,), it is required that f(0)=/(27)=0, and hence the right-
hand side vanishes with no conditions on the function g [aside from g&
AC(0,27)]. It is clear that the domain of L5 is larger than (and includes)
that of Ly; in symbols, Ly C L3, as required by the general analysis.

In order to construct a self-adjoint extension of L,, it is evident that one
must weaken the boundary conditions on the admissible functions in such a
way that the same conditions apply to both 6(L,) and D(L¥). There is a
continuous family of such self-adjoint extensions, which we denote by L{.
Then L is the operator —i(d/d¢) acting on the elements  of the domain
o, defined by

M ={y: y€AC[0,27), ¥(27)=ay(0), ¢ EC, |a|=1 }: . (57.25)

'In this section only (and in related Note 2, p. 346), we follow the custom in mathematics
and use the asterisk to denote the adjoint of an operator and the bar to denote complex

conjugation.
2This discussion is taken from Reed and Simon (7, pp. 141ff]. This same example also
appears in von Neumann [9]. E
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Expressed in words: The self-adjoint operator L{® has the domain 9),,
which is defined to be the space of absolutely continuous functions on the
interval [0,2) satisfying the boundary condition Y(27)=ay(0), where a is
a complex number of modulus 1. We note that L, CL{=L{" CL¥, as
required by the general theory. ‘

This result is satisfactory in that it validates the commutation relation,
Eq. (5.7.21), not only for a self-adjoint operator but also on a larger space.
The freedom to choose a is also satisfying, since this choice is a matter of
physics, and it allows one to choose a=1 as the physical space of cyclic
Sfunctions, \@VH f(¢+2m), as required by rotational symmetry. [Let us note
that the other choices of a correspond each to a group contained in the
covering group of the circle (the circle group having a=1); this freedom
results from the fact that the circle group is infinitely covered.]

This nicely disposes of items (a) and (b) above, but it worsens the
problem presented by item (c¢), since the operator ¢ no longer leaves the
domain ), invariant! Let us now turn to this problem, the task of finding a
satisfactory definition of ¢. It is not particularly helpful (although it is
possible) to define (Nieto [19], Susskind and Glogower [20]) ¢ as'a multipli-
cation operator everywhere modulo 2#. Let us rather make use of the
suggestion of Jordan [16] and consider, instead of ¢, the operator e'. This
disposes at once of the problem, since this operator is everywhere invariant
under. $—¢+27, and moreover leaves the domains %), invariant. The
commutation relation then reads

[Ly,e*]=e', (5.7.26)

where we now understand the operator L; to be the self-adjoint operator
Mcn:o”nm earlier by L§*~". This commutation relation is.valid on the domain
a=]"

We remark that this resolution of item (¢) is not without objection, since
technically the operator e’ is not a physical observable. We may, and shall,
replace e’® by its physically observable components sin¢ and cos ¢ where
necessary, and regard this final difficulty more as an inconvenience than a
genuine flaw, _ :

Before developing the uncertainty relations that follow from Egq. (5.7.26),
let us note explicitly the resolution of the “fallacy” with which we began,
The flaw lies in taking matrix elements of Eq. (5.7.21) using the eigenfunctions
of Ly=L{*=", since the operator ¢ takes the eigenfunctions out of the space.
Equivalently, the operator identity expressed by Eq. (5.7.21) is invalid when
applied to an eigenfunction of L. This resolution of the problem is rather
analogous to the resolution of a similar “fallacy” for the Heisenberg
commutation relation itself. This latter fallacy results from taking matrix
elements between “eigenvectors™ of the position operator. The flaw here is

i
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that the “eigenvectors” are improper, and not vectors in the Hilbert space.
Thus, in both cases, the resolution of the “fallacy” is to deny the validity of
the commutation relation when acting on eigenvectors.

Let us turn now to the uncertainty relations. It is convenient to consider

first the operators sin¢ and cos ¢ defined by
sing=(e'* —e ") /2i,
cosp=(e®+e ®)/2, . (5.7.27)
for which the commutation relations are
[L,,sind]=—icos o,
[Ly.cosdp]=ising. (5.7.28)

Consider the first commutator in Eqs. (5.7.28). Let us define the ovmqiowﬁ
L and X by

L=L,—(L;),
X=sin¢—(sin¢). ‘ (5.7.29)

Using [L, X]= —icos$, we may now repeat the procedure given by Egs.
(5.7.7)-(5.7.14). We find that the minimum uncertainty relation

AL;A(sing)=4|(cos ¢)| (5.7.30)

will hold if there exists a (minimum uncertainty) state |), which satisfies
the following conditions:'

LIg)=AX[¢),
(AL, )= —iX(cos $)/2,
(A(sing))*=i(cos ) /2A. (5.7.31)

Using Ly =—i3 /3¢, we may integrate the first equation in (5.7.31) to
obtain the following relation that the minimum uncertainty state y(¢)=
(|¥) must satisfy:

¥($)=N "texpi[(Ly)p—Acos¢—A(sin¢)g ], (5.7.32)

where N is a normalization factor.

'One must be particularly cautious with the (standard) notation used here. For example,
{cos ¢) is not a function of ¢, but rather a complex number whose value depends on the state

|¢) —namely, {cos¢)=(¥|cos ¢|}) =a(¥)=complex number.
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The requirement that Y(¢-+27)=4y(¢) forces the relation
expi2a[(Ly)—A{sinp)]=1;
that is,
(L;)—A{sin¢p)=m, (5.7.33)

where m=0, =1, %£2,... . Thus, we find a mn:E:oSEm infinity of E::B:B
.Son:mSQ states of the form

,va.gan'mm..?a:»Bmﬁ, m=0,%1,%2,..., (5.7.34)

where we note from Egs. (5.7.31) that A is a pure imaginary number of the
form A=ip with p>0 (see footnote, p. 311).

Let us digress a moment to give several integrals ‘that are useful for
interpreting the results given by Eqs. (5.7.30)-(5.7.34):

27l,(2p)= \o " dgetneoss,
2a1,(2n)= [ 27 de?reosteos =2 i 27 dpereostsin? ¢, (5.7.35)
Jo . 0
oH.\.Ns&@m?Smemm:G.
0

In these results, I, is a modified Bessel function (Watson [21]), and p is an
arbitrary real parameter.
We next introduce A=ip explicitly into Eq. (5.7.34) and define

Pop( )= N "1g'abFremd (5.7.36)

for all m=0, =1, =2,... and for all positive values of p.

The results given by Egs. (5.7.35) now allow us to give explicitly the
normalization of the states (5.7.36) and the expectation values ol cos¢,
sin® ¢, sin¢, and L, for these states:

N=2xl,(2p),

Aooévnmia_smén:@i?@:v, (5.7.37)
{sing)=0,
(Ly)=m.

We conclude: The statés in the set {|y,,,): m=0,%=1,%2,...;p>0) are
minimum uncertainty states for the observables L, and sin¢. The disper-

“\uﬁ e 1 ¥
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sions of these observables in the state |,,,) are given by

(AL,)*=p(cose)/2,
(A(sing))*=(sin? ¢y =(cos $) /2 (5.7.38)

and satisfy the minimum uncertainty relations
AL;A(sing )= 1|(cos ¢)| (5.7.39)
associated with the commutation relation
[Ls,sing]=—icoso. " (5.7.40)
These dispersions also satisfy the relation
AL, /A(sing)=p. (5.7.41)

The -explicit dependence of AL, and A(sing) on p is determined by Eqgs.
(5.7.38) and

(cosp)=1,(21)/1(21). (5.7.42)

A similar result to that stated above also holds for the observables L; and
cos ¢. [Interchange cos ¢ and sin¢ in all of Eqgs. (5.7.36)-(5.7.42), replacing
also i by —i in Eq. (5.7.40)].

Remarks. (a) The only parameter in the uncertainty relation (5.7.39) is p.
For large p one may show, using asymptotic properties of the modified
Bessel functions, that {cos¢)~1—1/4u. In this case we see from Egs.
(5.7.38) that AL, is large and A(sing) is small. Since (sin¢)=0 and
{cos¢p)=1, the uncertainty A¢ in ¢ is small, and we recover the usual
uncertainty relation result that AL, is large when A¢ is small.

(b) For the opposite extreme—p small—we find that (cos¢p)~pn, (AL;)
~p/VZ, and A(sing)~1/vy2. Thus, in the limit p—0, the uncertainty
relation (5.7.39) becomes trivial (both sides zero), thereby escaping the
dilemma (A¢ undefined) of the incorrect result based naively on Eq.
(5.7.21).

Appendix to Section 3. Quantum mechanics of discrete rotations. Weyl, in
his discussion of quantum kinematics (Ref. 8, pp. 272-276)], recognized
that the Heisenberg commutation relations were a particular instance of a
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much more basic view:'

We have thus found a very natural interpretation of quantum kinematics as described by the
commutation rules. The kinematical structure of a physical system is expressed by an irreducible
Abelian group of unitary ray rotations in system space. The real elements of the algebra of this
group are the physical quantities of the system; the representation of the abstract group by rotations
of system space associates with each such quantity a definite Hermitian form which “ represents™ it.
If the group is continuous this procedure automatically leads to Heisenberg’s formulation; in
particular, we have seen how the pairs of canonical variables then result from the requirement of
irreducibility, whence the number of parameters in such an irreducible Abelian group must be
even.”

Weyl recognized further that “our general principle allows for the possi-
bility that the Abelian rotation group is entirely discontinuous, or that it
may even be a finite group.”

In our opinion, the full import of this insight has yet to be obtained. As
an illustration, we shall consider the example of discrete rotations (that is, a
finite group) in some detail.

Let U and V represent a pair of canonical elements corresponding to the
finite group analog to Eq. (5.7.5). Thus, U and V are unitary transforma-
tions of a finite-dimensional Hilbert space that satisfy the relation

UV=¢eVU,

where’'e=exp(2wi/N) is an Nth root of unity for some integer N. Thus, one
has

Q:\» Hm.mq:.‘l\z —\»QN.

(In the applications to angular momentum to be discussed in Section 4, the
integer N will be taken to be equal to 2 j+1.)

In his discussion of such discrete Weyl systems, Schwinger? [22] found it
advantageous to introduce the (bra-vector) orthonormal basis

[Ga¥: k=1,2,.s M),
where
(at|V=(a**], k=1,2,...,N,

with (a¥*!|=(a'|. Thus, two bra-vectors, |a¥'y and |a*), are equal if
k'=k(mod N).

!The italics in the quotation are in the original text,

2See also the references in [22] to Schwinger’s papers in the Proceedings of the National
Academy of Sciences. We follow Schwinger's notation and presentation of the discrete Weyl
systems.
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Repetition of the action of the unitary operator V defines a sequence of
linearly independent unitary operators, V, V2,¥3... with the actions given
by

{at Vs ={at, n=1,2,...,
until one arrives at
(a¥|V¥=(a**V|=(a*|, eachk=1,2,...,N.
Thus, V¥ is the unit operator,
V¥=1,

This result shows that the eigenvalues of the operator V are the N distinct
complex roots of unity:

{v*: v=€?""/¥ and k=0,...,N—1}.

We may now factor the equation ¥¥—1=0 in the form

[(v/v)—1] Mo:\\s»uo.

k=

This result, in turn, shows that the expression for the projection operator
P(v%) for the eigenspace corresponding to the eigenvalue v is

) N—1
VAC»V“N/\]_ M N[niﬁ\?w\é.
1=0

Letting |v*) denote the eigenvector of ¥ corresponding to the eigenvalue .
v*, we may also express the projection operator P(v*) as

P(o*)=]o*)(o*].
Applying the operator P(v*) to the basis {{a"|}, we thus find
(a"|P(0*)=(a"|v*)(v*],
N—1
=N M Nlmﬁ.t\ZAQ::\ﬁ

=0

”21~ M Nlu.all\ZAa:‘*.\—.
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These results determine the transformation coefficients between the two
bases, which, with a particular phase choice, read

Aa»_c\vHZIwmniﬁ\z, .
Ac\_a»v =N lmmxwit\z.
This is equivalent to expressing the eigen-bras of V in terms of the original
basis {|(a’|} as given by
N1
AC»_”Z,Im 4 M AQ;«.IN*:.E\Z.
1=0
The operator U—in the canonical pair U, V—has the effect of cyclically
permuting the basis {{v*|}, in a way similar to the action of ¥ on the basis
{¢(a'|}). In particular, one has
(ot |U= (0",
which, in turn, implies that U =1, in accord with
Q:\» ”Nua..»x\zv‘»m\-.
The eigenvalues of the operator U are the Nth roots of unity, just as for

the operator V. In fact, the vectors in basis h?»: can be seen to be
precisely the eigenvectors of U, so that

(a¥|=(ut|.

The complementary pair of operators, U and V, are the generators of a
complete orthonormal operator basis for the set of all operators mapping
the space spanned by {(a"|} into itself. This operator basis may be taken to
be the set of N? operators given by

X(m,n)=N"iU"V",  m,n=0,1,...,N—1.

The orthonormality and completeness (which may be shown by Schur’s
lemma) are expressed by the relations

(Xt (m, n)| X(m', n')) =8, 8,

form,m’,n,n"=0,...,N—1.
b 9
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Remarks. (a) Schwinger has shown that a kind of ergodic theorem is valid
for this operator system, in which an average over spectral translations is
equated to an average over states.

(b) The importance of these discrete Weyl systems lies in the fact that the
pair of operators U, I generates a complete operator basis (for any N), and
the two operators are maximally incompatible, as expressed by the aspect of
complementarity. :

(¢) In the limit where N— oo, one recovers the Weyl representation
theorem for operators of the Hilbert—Schmidt class. Thus, one finds that

A= Y a(m,n)X(m,n),

tr(At4)= 3 |a(m,n)|?

m.n

becomes Weyl’s result in the limit:

A= .@‘ dodra(o,t)e 1)
— o0

tr( AlA) = .\\ dodrja(o, )P,

where p, ¢ denote a canonical pair of momentum and position operators.

(d) One can extend this construction to products of Weyl systems defined
over the prime numbers and to the infinite prime (thereby obtaining
Schwinger’s “special canonical group,” which is an alternative approach to
Dirac’s delta function). There would seem to be many interesting generaliza-
tions of the Weyl system to, say, idele and adele groups and the like.'

Let us conclude by noting that minimum uncertainty states do exist in
discrete Weyl systems, although, for reasons of brevity, we shall not give
these states here. (It should also be noted that this basic structural insight of
Weyl has been extensively developed for continuous systems. A guide to this
literature may be found in Grossmann [24a] and Wolf [24b].)

4. Uncertainty Relations for Angular Momentum in
Three-Dimensional Space

Introductory remarks. The first question that must be settled before the
desired uncertainty relations can be obtained is this: What is the canonical
set of variables for the discussion of angular momentum? We have, of

. 'Segal [23] discusses some of these possibilities briefly; Mackey [24, pp. 52-53] also
mentions such possible generalizations.
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