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In this second of a series of papers on quasi-intelligent states, we give a general method for the
computation of the Clebsch-Gordan coefficients for these states. In a special case, these coefficients are
found to be closely related to the Clebsch~Gordan coefficients of the rotation group. We also discuss the
nonuniqueness resulting naturally from the overcompleteness of these states.

1. INTRODUCTION

In the first paper of this series! (this paper will
henceforth be referred to as I) we introduced the group-
theoretic formulation for the study of the quasi-intel-~
ligent states which are generalizations of the states
(called the intelligent states) satisfying equality in the
Heisenberg uncertainty relation aJ5aJ3= 1(Jp 1% In
particular, we presented a method based on the knowl-
edge of a certain generating function for the computa-
tion of matrix elements of polynomials in the infinitesi-
mal generators of rotations in three dimensions be-
tween quasi-intelligent states,

In this paper, we continue this study and compute the
Clebsch—Gordan coefficients for these states., Not
surprisingly, these come out to be very closely related
to the Clebsch—Gordan coefficients of the rotation
group,

The present paper is organized as follows,

In Sec. 2, after redefining, for completeness, the
various operators we compute their effect on the quasi-
intelligent states, We utilize the results of this section
in the next section to show that any Wigner state can be
expressed as a linear combination of the quasi-intelli-
gent states for any given complex number a#x1,% This
is effectively the inversion of the expression for a
quasi-intelligent state in terms of the Wigner states
which was given in I, Indeed in Appendix A, we verify
the correctness of this inversion. In Sec, 4, we derive
the Clebsch—Gordan coefficients for the quasi-intelli-
gent states and show that, up to a normalization inde-
pendent of the magnetic quantum numbers, these
Clebsch—Gordan coefficients for the same « are very
closely related to the Clebsch—Gordan (CG) coefficients
of the rotation group. In Appendix B, we show that this,
so far, unknown normalization coefficient is indeed 1.

We emphasize that the quasi-intelligent states are
eigenstates of a non-Hermitian operator having the
same finite spectrum as the operator J; for a given
angular momentum j. The non-Hermiticity of this
operator makes the quasi-intelligent states non-
orthogonal, thus some steps in the computation of the
CG coefficients have to be handled rather carefully,

In Appendix C, we exemplify a consequence of the
nonorthogonality of the quasi-intelligent states by show-
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ing that we only obtain a generalization of the expan-
sion of the unit operator commonly known as complete-
ness. Thus the quasi-intelligent states are, perhaps,
not complete in this sense, though they are definitely
complete in the sense that any Wigner state can be ex-
pressed as a linear combination of them,

2. THE OPERATORS J; (a), /. {«} AND THEIR
EFFECT ON A QUASI-INTELLIGENT STATE

As in I, the normalized quasi-intelligent states cor-
responding to a given angular momentum j and a com-
plex number o #+1 are given by?

limay =[a’ ()] exp(675) exp(= i bnedy) [jm), (1)
where 2
1-o
69:<1 T a > (2)
and
a (o) ={(im| exp[- (6 + 6%)J | |jm) 2, ®)

These states are eigenstates of the operator J4(a)
={J; - iady)/(1 - oH1/?, Indeed

Ji(a) ’jm o) =m |jm oy, (4)

Thus for a givenj and a complex number a#+1, Ji(a)
has the spectrum —j <m <j, exactly the same as of the
operator J3, 4

The basic difficulty in handling the quasi-intelligent
states is the result of the obvious non-Hermiticity of
the operator J3(@). As an immediate consequence,
the corresponding eigenstates [jima) might not be
orthogonal, Indeed it was explicitly verified in I that
these states are not orthgonal for real 60, We also
showed in I that for real 6#0, the normalization coef-
ficients @’ (a)#1,

We define the operators

, Q i
Ji(a)y=+7 - a2)1/2 Jix 1< 0’2)1/2 Jy =y, (5)

which together with J}(a) defined above satisfy the com-
mutation relations

[J3(a), 7L (@) == T(a), (6)
[73(a), I2(@)] = 2J5(a), M

which are exactly the same as those satisfied by J;,
J,=d x4y,

Also
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FP=R+A+B=HIJ +IJ ]+ R
=3[ (a)2(a) + T ()T (@)] + 5 (a). (®)

Now we wish to compute the effect of JI(a) on |ina),
This can be immediately known from

exp(— 6J3)J. (a) exp(6J3) == iJy — J;g (92)
and

exp (i 5mdy) (& iy — J5) exp(— i3mdy) =dy & iy =4, (9b)
Thus,

JU(@)|jma) = [a’ @)L (@) exp(6J,) exp(- i smdy) | i)
=[a’, (a)] exp(6];) exp(= i smdy)J, |jm)
a mii( )

= ) (GFm)G+m+ )2 jme1). (10)

We can immediately verify that Eqs. (4) and (10) are
consistent with Eqs. (6)—(8).

In the following, we shall also require use of the
states Ijma®, Here af is defined such that a — - a*,
whereas (1 - a?)!/2 —[(1 - ¢%'/2]* or in the language of
6, 8 —— 6%, Using the variable 7, this operation® is
expressed as 7— (7)), The state |jma) is orthogonal
to Ii'm’a®), Indeed,

{G'm' o’ ’jma) =0, 0 el O W] (11a)
since
ajm(a):ajm(ac), (11b)

as can be deduced from Eq, (3) above or one may see
it manifestly in Eq. (30b) in L

3. EXPRESSION FOR A WIGNER STATE IN TERMS
OF THE QUASI-INTELLIGENT STATES

In I, we derived the manifest expressions’

lima) =[a’ (a)] <§;_-_¥-1;%) e "Z?r [71m,) exp(m,0)

(j+7ﬂ )! 1/2 i r
X((;‘—mi)!) 271

“ (2 = 7)!
rI(G-m=-1{G+my—-7)!

(12a)

. 1/2
P (2 5 e
/e myy ¥

(J
.(,7_—}”1)!_ e -j+r my=m+r
X((j*'mi)!) 2 (=™
(2 —»)!
r1G+m=-r)t(G-my-r)t"’ (12b)

which are equivalent to the concise Eq. (1) in terms of
the operation of the infinitesimal generators of the rota-
tion group., Our purpose, in this section, is to utilize
the results of the previous section to invert this equa-
tion to obtain an expression for any Wigner state as a
linear combination of the quasi-intelligent states for
any given complex a#zx1,

To achieve it, let us go back to Eg. (1) which results

in
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lim) =a (o) exp(i zmTy) exp(— 6J3) |jma), (13)

which is a nonmanifest form of the inversion we are
seeking. Since we do know how J3(0), J](o) operate on
the quasi-intelligent states Ijma), we attempt to ex-
press the operator exp(i inJ,) exp(- 6J5) in the form
explaJ’(a)] exp[bJi{a)] exp[cd (@)]. This can be done
using the 2 X2 representation 0;/2 of the operators J,.
We find

or
o 1 3(0)
exp 5/ exp(- 6J5) = exp[~ J! ()] 27

xexp| 7! (a)]. (14)
Thus

Jhtla)
!jm):njm((y)exp[—Jf_((Y)]<§1;> ? exp[TJi(a)Hjma),

(15)

where for the operators on the right, we have already
understood their operation on |j# o) in the previous sec-
tion, Utilizing Eqgs. (4) and (10), we arrive at

_ /2 , 172
ljm) = exp(= mo (8 +::;; ) my_‘”: jm ”@(%1—;57;‘1)

(j +m’)!
G=-mY ' = m)tm’=m")°
(16)

In Appendix A, we shall explicitly verify the correct-
ness of the above inversion.

x o w(a)(= )"

In Eq. (16), we have expressed a given Wigner state
ljm) as a linear combination of the quasi-intelligent
states |jma) for a given complex o #x1 and —j < w1 < j.
This shows that the quasi-intelligent states are indeed
complete in the sense that any Wigner state can be ex-
pressed as a linear combination of them,

4. THE CLEBSCH-GORDAN COEFFICIENTS FOR
THE QUASI-INTELLIGENT STATES

Now we have all the machinery at our disposal to
enable us to compute the Clebsch—Gordan coefficients
for the quasi-intelligent states. These coefficients are
defined through the equation

ligmic [igmgag

= E (jma |_7'1n71(y1;j2;)12 o) ’jm oy,
jm

(17a)

where we have used »ound brackels to distinguish them
from the usual Clebsch—Gordan coefficients of the
rotation group. Equation (17) above expresses the com-
pleteness of the states |jma) for any complex ¢ #+1 in
the sense that any Wigner state [j#) can be expressed
as a linear combination of them. Note particularly that,
in geneval, the sum in Eq, (17) above is over both j and
m where i —jy! <j€ji+jyand —j<m<jfor agiven j,

The Clebsch—Gordan coefficient (jimaljnqo;janiges)
can be expressed as an inner product using the states
lima®), Indeed
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(jma ]_7'1u71cv1;jzm?az)
=(imac| ([ipnay) |[lmephla ()P

on making use of Eq, (11a). The inner product on the
right above can be computed using Eqs. (12) and hence
we can obtain a general Clebsch—Gordan coefficient for
different values of o, ¢,, and «¢. This coefficient is,
however, very complicated and cannot be simplified
except in special cases. In the following, we discuss a
rather special case where o;=«@;=«, Now the defini-
tion of o° has been chosen such that from

Ji(o) Ij WLy =m |_7'm o)

(17b)

one concludes
(jmac fJg(a') = ?;7(]’1;70"] .

Thus Eq. (17b) implies, for the special case when
Q== 0y,

(Gmaljm o;iangos)
= O oy (1100|1043 j2m12000), (18)

or the summation in Eq. (17a) over m can be omitted
with the understanding that m =m;+wm,, i.e.,

|7gnryorg ‘jzmzag)

=33 (GOny +my)e|jmyag;iamaasy) lima). (19)
j

Note that since the a’s are kept the same throughout
P —iadf? | JIP - iadi?
1- O£2)1/2 (1~ 02)1/2
(J(1)+J(2)) la( (1)+J(2))
{1- o)t

50 (a) + 5P (a) =

Jy—tad.
= Q- ayr =)

which results in the simplification given in Eq. (18)
above and the ones which follow, Similar results hold
for the operators Jl(a).

Next we operate both sides of Eq. (19) by J]{a)
=J!"a) +J D (a), Using Eq. (10), this operation gives

ﬂj1(m1+1)((y)

a’t, (@)

@2y (@)
a’2m2(a)

X ]]’1)7710) ]jz(mz +1)a)

(g = my) Gy +mg+ D12 0my + Da) [Famyo)

[(jy = ma) (g + my + 1)]H/2

= 7; %}:ﬁ;’%}l[(j— m)(G+m+ 1)

X (jma Ijl';-n.ia;j2m2a) ]j(m +1a),

Next we use Eq. (17) again for [j{(m +1)a) |jamea)
and |jymya) li,(my+ 1)) which appear on the left-hand
side of the above equation, This results in
aji(mid)(a)

a1, (@

XT3 (i m + D |jylmg +1)asjamea) |j0m + 1))

[Gy=mp G+ my +1)]172

7 :
+ a’? (mz-ri)(a)

a]2m2 (O’) {(]2 - ”12)(]2 T Ny + 1)]1 12
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><Z) (i m + D |igmya;iyOmg + D) |im + Doy

=2 aa‘f"}”f) [G-m)G+m+ DI

X (jma ’jimla;]'zmzoz) |_7' (m +1)o), (20)

In order to remove the sum over j we take the inner
product of both sides with (j*m +1)a| and use
(j*(m+1)alj(m +1)a) =6,,. [Note that this orthonormal-
ity involves j and not m and hence does not depend upon
the non-Hermiticity of J4(«). ] We also multiply by
afiml(a)a"zmz(a)[aﬂmm(a)]‘i to arrive at

a't iy, 1)(@)a2, (@) )
e 2 [y =my) Gy +omg D]

aj‘m«ri)(a)

X (j(m +1)aliglmg +1)a;jamya)

a"1m1(a)a"2(m2+1)(a)
ajm+1(a)

X(jm + Do ‘j17771(1;j2(’m2 +1)a)

[y —mp){fg t g+ 1)11 &

a't_(a)a'2, (o)

L DA AN P o + 1)]17/2

= 7@ [(G=m)(G+m+1)]
><(jma]jimla;jzmga), (21)

which shows that the quantities
a1, (@)a’?,, (@)

a’ (@)
satisfy the same recursion relation as the one satisfied

by the CG coefficients (jm |jmy;jmy of the rotation
group. Hence we conclude that

(jma|jynya;jmea)

(jma 171'”10’ s Joa )

=B(1j2i; @) 7 @ nlc)

1m1(o‘)aj2m2(a) (i ’-i1m1;j27‘)’lz>, (22)

where the coefficient 5(j,7,7; @) will have to be fixed by
normalization and choice of phase. 8 These coefficients
are independent of the magnetic quantum numbers, In-
deed, in Eg. (22) we have been able to separate the
dependence of the CG coefficient for the intelligent
states into the corresponding CG coefficient of the rota-
tion group and the normalization factors of the involved
intelligent states.

To calculate the B’s, it is clear from the above equa-
tion that if we could obtain the coefficient on the left for
sonme special values of the magnetic quantum numbers,
we would be able to obtain the 8 in this equation, Note
that Eq. (19) implies that the CG coefficient
(jmaljpmyo;jamec) can be obtained by taking the inner
product of |jimya) ljmyay with (jmel. In Appendix B
we shall carry out this program and show that the 8’s
can, in fact, be chosen to be just one. Thus we find
finally

(ima [jm?ia;jznqa)

= ‘—a{”&L*( jm |3y damig) (23)
= a51m1(0)0j2,n2(01) UL UL

where both sides are identically zero if m # m;+m,.,

At this stage, we wish to remark on the possible
nonuniqueness in the expansion for the product
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liymyay ljamgay) in terms of the states |jma). Already
in Eq. (17a) wherein we defined the Clebsch—Gordan
coefficients, we have the built-in nonuniqueness since
the complex “o’ appearing on the right is at our dis-
posal. Note that the states |jnia) are complete for each
a#1, Considering the set of all “a” at our disposal, we
possess a highly overcomplele set of vectors which
should naturally result in the nonuniqueness expressed
above. In the special case expressed in Eq. (19), we
have restricted ourselves to a = ¢ (note that oy = ay).
Using the states [jma”) and Eq. (IL 6) in Appendix C
we can rewrite Eq, (19) as

|_7'1m1a) fjgmgoz)
=2 Gl + e ]jimioz;jznqa)
im

x{fma’® lj (bng + 17?2)(¥)[ﬂjm(al)]2 ‘_7'11’701’) , (24)

which is an expansion as a linear combination of |jma’)

and reduces to Eq. (19) in case ¢ =a’ on using Eq. (11a).

Note that the expression on the right in the above equa-
tion has the additional {perhaps artificial in this special
case) summation over m,
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APPENDIX A: EXPLICIT VERIFICATION OF THE
INVERSION IN EQ. (16)

We proved Eq. (16) in Sec. 3 by using the knowledge
of the effect of the operators J{(a) on {jma), Now we
verify that Eq, (16) indeed provides an inversion to Eq,
(12), For this purpose, we substitute for [jm"q) in Eq.
(18) from Eq. (12), This makes the expression £ on the
right-hand side of Eq. (16) become

_

- 172
E = exp(~ mfi){(]—_ﬂl!—:‘ ! >

4 l,’ ”]3> (_. 1)m1-2m2+m3+r
i+ 777) ! mymomar

(j=my)!]t”?
X J=m +r "
exp(m30)2™7"" l:(], FY

(j +my) (2 -7)!
(G=m)L oy —m) (g = m) 1wl (G + iy~ 1)1 (F - mg—7) °

(A1)

Though #1y, iy, my summations may not be over integers,
before performing any summation, we shall ensure that
the variable we choose is indeed an integer. Now the

'y summation can be performed [by first replacing say
(11— u13) by a new variable in place of i, and summing
over it]., This gives

; 1/2
E = exp(- mH)li(—‘I—ﬂ)i] ! > ljmg)(-— 1)ms-myT

{j +nm)! mymgr

j — mg)t|t/?
X exp (14 9)[%+—m§;{l

(j +n1)12 = »)!
(F=m)l my=mMrt(G+m=NI(j-mz=r) "~

(A2)

X

The ¥ summation can now be done which results in

(j ~m)! 172 . i .
E =exp(—m¥8) G ¥ |img (= 1)m ™ exp (mgh)
- N m1m3

L[]t 1
(j—m3)! (mg =)=yt mg)t "

Now the 17y summation produces 6mm3 which finally gives

(A3)

E= ‘1 my,
exactly the same as on the left-hand side of Eq. (16).

APPENDIX B: EVALUATION OF THE NORMALIZATION COEFFICIENT B {/,/,/;2)

In this Appendix we wish to compute the §’s that appeared in Eq, (22) relating the CG coefficients for the quasi-
intelligent states with those of the rotation group. As remarked earlier, we should be able to compute 8’s from
the knowledge of the CG coefficient on the left for some special choice of values of the magnetic quantum numbers.
From the representations for |jma) given in Eq. (12) we can, indeed, give an explicit answer for these CG co-
efficients in terms of the CG coefficients of the rotation group. In general, however, manifesting the factorization
expressed in Eq. (22) must be a formidable task. For a very special case, we might, hopefully, be lucky. This is
fortunately the case for the special choice n1y=j;, My ==7Js, 7 =js—j; Note that since iy =jol €j<jy+7i, the value
7y~7i, is indeed a permissible value, From the representations in Eq. (12) we obtain

exp(m{6)

oy =[a's; ()21 @1 ]2 2 [jemb 77
mi

lia (= o) ay = [a2 (@) 12772 (@)1 17 5 ligmd) (= D22

ma

and

. . . 1/2
(i(is=dn)e| =[af<i1-j2>(a)1‘12"jﬁ7—'—“i@] "% limn

(J +71~J2)!

m'r
Thus

( (iy-i)e ‘j1j10§j2(— Ja)a)
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Fotm (= mP!L

]1/2 ’ (Bl)

exp(mio)

[(.7‘2+177é)!(j2—- ]né)!]i/Z’ (B2)
U exp(n'07)(2) = 1)} (53)
(7 =m) - ri(f-jitia-MIG+m =-»)1"
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. . s 3 . 172
(2]1)!((3‘2]_&)].11-(_]]‘2){1 +j5)! ) E' (jm’]j,(m’—mg’);jzmQ

-1n=( )
:[(1“11(0/)5112(-12)(a)aj(j1-12)(0)] A (
"’i"'Z'

. (}+m,)! 1/2 'd formoir ’
G TG e G BTG G| 2 U el o)

(2 =7)! B4
PTG 1 #72- MG ¥ =L By

X

where knowing that the CG coefficient {jm’|j;m}{;j;m$) can be nonzero only when m’=m{+mj, we have eliminated
the summation over m{ by replacing m{ by m' - mj everywhere, Now we use’®
(m [igm" = mg); jgms)
- [(zj +1)(G = j1+ia) (G +m’ = mi)! (G = m’ +mi)1 (jo = mh)1 (j +mu]“2
(G +jytig ¥ D=7+ +i) (G +iy = 3) L2+ mg) 1 (= m")!

XD (=0 Gyt mbts)1(j +jy = mi- )L (85)
. STGy+m’ = mg= )1 Gy = my= 5)1(j —1 + mg + )]

for the CG coefficient of the rotation group which appears above in Eq. (B4), This results is

(GG - j)aliiia;iy=ja)

: {2 +1)(2;)! (22)! MY G =drtja)! ; forsaget
=lafy Jo i 1 [ (2] .+ ALT5| : - - —J : -1 1*114212+m2+r~32 Jeiqring)er
[0 11(01)61 (-12)(01)(1 (]1-12)(01)] (] +]1+]2+1)!(]1 +55=4)1 (] +]1_]2) m%n)ﬁrs( )

@ =) (ot mi+s)1(j +j; = mj—s)!
71 =jytia =0 +m = r)st(y+m’ —mg - s\ (jo=mf = s)L(j = +mi+s)l ~

G
G = m" Gy +mg)!

exp[m’ (6 + 6%)]

(BS6)

The expression within the curly brackets is called S in the following. To simplify S, we replace j, - mj- s by s,
i, e., we replace s by j,~ m3— 5. This gives

. Ry ) . +m,)!
S (.7 ].1 +J'2) 7\ 2-(]-»]1«]2}47 -1 ~deiy=gyeres _ (] y exp[m’ (6 + 6%

(73177 sl tv EEHTETL IR

N @ =7)! Gz = )L+, =g +5)! -

rHG=ji+ie= MG +m = v)st (G- ja+m" +8)1(Jy— mp =)L (j —jy +jp—s)! °
The 4 summation now gives 22’2'5/ (2j, - s)! This results in

N RRY .
. (G =j1+7e)! 2 2-(j+]1-12)+r-s(_ 1)-!+j1-i2¢r+s (.2 + mlzl [ml(e + 9*)]

U0 (G-m') XP

« Q-G +j1—Ja+s) (B8)
ri(J =jy i =) G +m =)l (i —ja+m’ +$)1(j~j; +jy-s)! *

To put S in a form which can be recognized, we replace j —j, +j, — s by a new variable s which results in

(7 =71 +j2)! {j +m}! YN .

(2% - 7)1 (2f - s)!

G =jytia =G+ m =) Isl(G~jy+jp- )1 (G+m' - s)1 (B9)
Comparing the above form of S with Eq, (12a), we immediately conclude
Sz[aj(ji-jﬁ(a)]z-
Now we return to Eq. (B6). Recognizing that
s @+ 1)(2i) (2! )“2
(704, ]2)‘]1]1,]2( ]2»_<(j+j1+j2+1)!(j1+jz—j)l s (B10)
we find
e sy oy @Gy (a N T
GGy =-daeljijye;ial ]2)0)“ajiji(a)ajz(_jz)(a) GGy = ja) |i1dssd2(= 72D, (B11)

which on comparison with Eq. (22) shows that 8(j;j,7; @)=1, Note that it has been fixed completely by the phase
convention used in defining the relationship [Eqs, (12)] between the quasi-intelligent states and the Wigner states,
This equation has a built in phase convention which cannot be fixed by knowing only that |jma) is an eigenstate of
the operator Jj{a).

In the above computations, we have used the fact that the Clebsch—Gordan coefficient (j(j; - j,)a 117 a;de(=d2)a)
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is just the inner product {j(ji —Fa)a (117200 l7a(-j3)®))). We could have also used that this coefficient is also equal to
the inner product (j(ji—Jj»)a®l (171710) l7o(=F2) )} [a’jl_jz(oz)]z° It is obvious from (B9) above that the S corresponding
to this new inner product would have been 1 and we would be able to reproduce the previous results,

APPENDIX C: AN ANALOG OF THE EXPANSION OF THE UNIT OPERATOR
In this Appendix, we shall prove that

¥ limay(ima|lal ()P =3 [imy(Gm | explm(e +0%)]. (C1)

Using Eq. (12a) for |jma) and Eq. (12Db) for (jmai we get

(‘L‘*’ )l (j - WZz)! ]1/22-2JW+3

T limay(ima|l@p@F= 5 [jm(inm| exp(m19+m29*)[(j—m1)!(j +mg)!

mmimz'r‘s

mo=mer+s (2] ‘1’)1(2] - S)!
x(-1)m IG-—m=MG+m~sl(G+m=s)(j-my=-s)! "~ (C2)

Now

-y 1 —
D IV ER R Iy ©

From the above two equations, we obtain

(j + neq)! (7 — le)l]lﬂ(_ 1)/+m2-r

¥ imaymallal ()= 3 |imp(imy] exP(n119+m29*)l:(j-m,)!(j+m2)!

m mimzr

1
X G m= I (——mg+ 7)1 °

(C4)

On performing the trivial » summation, we obtain a delta function &, ms and finally arrive at Eq. (C1) which is a
genevalization of the expansion of a unit operator in the sense that if we restricted ourselves to real §=0, we would
obtain as a special case of Eq, (C1)

¥ limay(gmal =33 |imy(jm| =1, (C5)
m
which is indeed an expansion of the unit operator. We did use the fact that for real 6=0, a’,,,( a)=1, But in this
case, the states |jma) are indeed ovthonormalized by just writing
|im o) = exp(8J5) exp (= i3my) [im)
and Eq, (C5) should be obvious.

Incidentally, a proof similar to the above results in

T limad(ima (@ ()P =20 [im)(jm| =1, (C6)
m m
1
1M. A, Rashid, J. Math. Phys. 19, 1391 (1978). Egs. (12),
This restriction is explained in Ref, 1. Bgm’ | jm’ — mb); jymb)
3See Eq. (29) in Ref. 1 fined ; r(2'+l) . . N
. « 4, = (= 1)It¥in=i (— 1)dotm3 Z l; ot !+
4The normalization of the operator JJ (@) has been chosen to (-1) 1) 2, +1 G4 (= m') | gy (=m” +mi))
have the same spectrum as that of Js, on combining Egs. (3.5,15) and (3.5.17) in A.R, Edmonds,
Note that our normalization of the operators makes the an- in Angulay Momentum in Quantum Mechanics (Princeton
swers of their effects on the quasi-intelligent states as very U.D., Princeton, New Jersey, 1957), Finally we used
simple. Ed. (3.6.10) for the CG coefficient on the right, This prema-
§Note that JJ (@) = [J{ (@)It, whereas J/(a®) =[J ()], nipulation of the CG coefficient has reduced the size of the
'See Egs. (32b) and (32¢) in Ref, 1. Appendix considerably.

8We shall make this choice by invoking consistency with
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