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We present an accurate description of the conjugate pair angle–angular momentum in terms of the
exponential of the angle instead of the angle itself, which leads to dispersion as a natural measure of
resolution. Intelligent states minimizing the uncertainty product under the constraint of a given uncer-
tainty in angle or in angular momentum turn out to be given by Mathieu wave functions. We discuss
Gaussian approximations to these optimal states in terms of von Mises distributions. The theory is
successfully applied to the spatial degrees of freedom of a photon and verified in an experiment that
employs computer-controlled spatial light modulators at both the state preparation and the analyzing
stages.
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Light carries and transfers energy as well as linear and
angular momentum. The angular momentum contains a
spin contribution, associated with polarization, and an
orbital component, linked with the spatial profile of the
light intensity and phase [1]. The seminal paper of Allen
et al. [2] firmly established that the Laguerre-Gauss modes,
typical of cylindrical symmetry, carry a well-defined an-
gular momentum per photon. In the paraxial limit, this
orbital component is polarization independent and arises
solely from the azimuthal phase dependence eim�, which
gives rise to spiral wave fronts. The index m takes only
integer values and can be seen as the eigenvalue of the
orbital angular-momentum operator. In consequence, the
Laguerre-Gauss modes constitute a complete set and can
be used to represent quantum photon states [3–5].

The possibility of using these light fields for driving
micromachines, such as optical tweezers or traps, has
attracted a good deal of attention [6–8]. Besides, entangled
photons prepared in a superposition of states bearing a
well-defined orbital angular momentum provide access to
multidimensional entanglement. This is of considerable
importance in quantum information and cryptography, be-
cause with these states more information can be stored and
there is less sensitivity to decoherence [9–12].

In the following, we deal with cylindrical symmetry: We
are concerned with the planar rotations by an angle� in the
plane x-y, generated by the angular momentum along the z
axis, which for simplicity will be denoted henceforth as L̂.
In this respect, we wish to bring up that the proper defini-
tion of angular variables in quantum mechanics is beset by
well-known difficulties [13,14]. For the case of a harmonic
oscillator, the problems essentially arise from two basic
sources: the periodicity and the semiboundedness of the
energy spectrum. The first prevents the existence of a phase
operator but not of its exponential. The second entails that
this exponential is not unitary.

Although we have here the same kind of problems
linked with the periodicity, the angular momentum has a

spectrum that includes both positive and negative integers,
which allows us to introduce a well-behaved exponential of
the angle operator, denoted by Ê. Since the angle is canoni-
cally conjugate to L̂, we start from the commutation rela-
tion [15,16]

 �Ê; L̂� � Ê: (1)

The goal of this Letter is to develop the first comprehensive
approach to the minimum uncertainty states for the relation
(1). Previous attempts to deal with these matters run into
difficulties stemming from the fact that a periodic vari-
able—angle—is described by a nonperiodic measure of
spread—variance—[17,18]. Consequently, the angular
uncertainty depends on the 2� window chosen.
Furthermore, the conjugate variable to the angular momen-
tum is treated heuristically. For example, the angular un-
certainty is delimited by a wedge structure [19], and there
is no quantum counterpart of the angle in the measurement
scheme. Finally, the associated commutation relation de-
pends on the value of the angle distribution at a point,
which makes the uncertainty relation and the correspond-
ing minimum uncertainty states cumbersome.

Our results strengthen the evidence that Ê furnishes a
correct description of the angle. The associated (con-
strained) intelligent states prove to be the Mathieu func-
tions when a meaningful periodic resolution measure
(namely, the dispersion) is employed. We shall also bring
out that Ê can be associated with a feasible transformation
(a forklike hologram) that shifts the values of the angular
momentum. Though this transformation is widely used for
holographic detection of vortex beams, its fundamental
role as the conjugate variable to the angular momentum
has not yet been recognized. Therefore, the minimum
uncertainty states are delimiting borders for these quantum
variables, and our formulation thus paves the way for a full
quantum processing of vortex beams. In this sense, this
Letter provides not only the first rigorous fully quantum
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formulation of the angular momentum and its conjugate
variable but also a bridge between the well-developed
classical theory of singular optics and the realm of quan-
tum optics.

Let us start by recalling that in directional statistics a
simple meaningful measure of angular spread is the dis-
persion (or circular variance) [20,21], defined as �2

� �

1� jhei�ij2, where the average values are computed with
the angle distribution P���. In our case, this coincides with
��Ê�2 � hÊyÊi � hÊyihÊi, which is an adapted version of
the variance for unitary operators [22]. As expected, it
possesses all of the good properties: It is periodic, the
shifted distributions P����0� are characterized by the
same resolution, and for sharp angle distributions it coin-
cides with the standard variance since jhei�ij2 ’ 1� h�2i.
This confirms that the statistics of Ê should be considered
instead of the angle itself.

The action of the unitary operator Ê in the angular-
momentum basis is

 Êjmi � jm� 1i; (2)

where the integer m runs from �1 to �1. Therefore, Ê
possesses a simple optical implementation by means of a
phase mask removing a charge �1 from a vortex beam. In
the representation generated by the normalized eigenvec-
tors of Ê, we can write L̂ � �id=d� and Ê � ei�, which
formally verify the fundamental relation (1).

Let us turn to the corresponding uncertainty relation.
When the standard form ��Â�2��B̂�2 � 1

4 jh�Â; B̂�ij
2 is ap-

plied to Eq. (1) and the previous notion of dispersion is
used, we get

 ��Ê�2��L̂�2 � 1
4�1� ��Ê�

2�: (3)

This can be recast in terms of the cosine and sine operators
Ĉ � �Ê� Êy�=2 and Ŝ � i�Êy � Ê�=2, yielding

 ��Ĉ�2��L̂�2 � 1
4jhŜij

2; ��Ŝ�2��L̂�2 � 1
4jhĈij

2: (4)

States satisfying the equality in an uncertainty relation are
sometimes referred to as intelligent states [23]. However,
in the case of Eq. (3), the inequality cannot be saturated
[24], since this would imply to saturate both relations in (4)
simultaneously. In other words, the formulation (3) is true
but too weak.

To get a saturable lower bound, we look instead at
normalized states that minimize the uncertainty product
��Ê�2��L̂�2 either for a given ��Ê�2 or for a given ��L̂�2.
We approach this problem by the method of undetermined
multipliers. The linear combination of variations lead to
the basic equation

 �L̂2 ��L̂� �q	Ê� qEy�=2�j�i � aj�i; (5)

where �, q, and a are Lagrange multipliers. We shall solve
this eigenvalue equation in the angle representation
���� � h�j�i. Note first that, without loss of generality,

we can restrict ourselves to states with hL̂i � 0, since we
readily obtain solutions with mean angular momentum �m
by multiplying the wave function by exp�i �m��.
Alternatively, we observe that the change of variables
exp�i������� eliminates the linear term from (5). In
addition, we can take q to be a real number, since this
introduces only an unessential global phase shift. To prop-
erly interpret this eigenvalue problem, we also introduce
the rescaled angular variable � � �=2. Surprisingly, this
turns Eq. (5) into the standard form of the Mathieu equa-
tion

 

d2����

d�2
� �a� 2q cos�2������� � 0: (6)

Let us note in passing that Mathieu states have many
applications not only in optics but also in other branches
of modern physics [25]. The variable � has a domain 0 

�< 2� and plays the role of polar angle in elliptic coor-
dinates. In our case, the required periodicity imposes that
the only acceptable Mathieu functions are those periodic
with a period of � or 2�. The values of a in Eq. (6) that
satisfy this condition are the eigenvalues of this equation.
We have then two families of independent solutions,
namely, the angular Mathieu functions cen��; q� and
sen��; q�, with n � 0; 1; 2; . . . , which are usually known
as the elliptic cosine and sine, respectively. The parity of
these functions is exactly the same as their trigonometric
counterparts; that is, cen��; q� is even and sen��; q� is odd
in �, while they have period�when n is even or period 2�
when n is odd.

Since the 2� periodicity in � requires � periodicity in
�, the acceptable solutions for our eigenvalue problem are
the independent Mathieu functions of even order

 �2n��; q� �

����
2

�

s
�

�
ce2n��; q�;
se2n��; q�;

n � 0; 1; . . . ;

(7)

where the numerical factor ensures a proper normalization.
In what follows, we consider only even solutions
ce2n��; q�, although a parallel treatment can be done for
the odd ones. After some calculations, we get

 ��L̂�22n �
1
4�A2n�q� � 2q�2n�q��;

��Ê�22n � 1� j�2n�q�j2;
(8)

with �2n�q� � A�2n�0 �q�A�2n�2 �q� �
P
kA
�2n�
2k �q�A

�2n�
2k�2�q�, and

the coefficients A�2n�2k are the Fourier components of the
periodic function ce2n��; q�.

If we expand ce2n��; q� in powers of q and retain only
linear terms [25], we have
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 ��L̂�22n �
�2n�2

4
�

4n4 � 3n2 � 1

8�4n2 � 1�2
q2;

��Ê�22n � 1�
1

4�4n2 � 1�2
q2;

(9)

which shows a quadratic increasing with q of the angular-
momentum variance and a decreasing of the angle disper-
sion. The uncertainty product, up to terms q2, reads as

 ��Ê�22n��L̂�
2
2n � n2 � 1

4f�4n
4 � 5n2 � 1��1� ��Ê�22n�g:

(10)

It is clear that this product attains its minimum value for
n � 0, which saturates the bound in Eq. (3) for this range
of values of q. Moreover, one can easily verify that this
fundamental mode n � 0 is the minimum uncertainty state
for all values of q.

We observe that for large dispersions (q! 0) the fun-
damental wave function may be approximated by P0��� /
jce0��; q�j

2 ’ exp��q cos��, which is the von Mises dis-
tribution, also known as the normal distribution on the unit
circle [26]. This remarkable result shows that our optimal
states are very close to Gaussians on the unit circle.
Curiously enough, it has been recently found that the
von Mises distribution maximizes the entropy for a fixed
value of the dispersion [27]. In the opposite limit of small
dispersions (q!1), one can also check that P0��� /
jce0��; q�j2 ’ exp��

���
q
p

cos��. Therefore, von Mises
wave functions constitute an excellent approximation to
the Mathieu wave functions, except perhaps for intermedi-
ate values of the dispersions, where a deviation may occur.
In Fig. 1, we have plotted ��Ê���L̂� in terms of ��Ê�. The
solid line represents the fundamental Mathieu beam, which
provides the optimal angular resolution, while the dashed

line represents the von Mises approximation. The very
small difference between these two curves is magnified
in the inset. For the purposes of comparison, the ideal
bound coming from Eq. (3) is plotted as a dotted line.
These results are free from artifacts arising from an inap-
propriate quantification of the angle spread. In particular,
the minimum uncertainty states with large dispersions
present wide angular distributions and vice versa.

To verify our theory, we performed an experiment with
the spatial degrees of freedom of light prepared in various
von Mises states. Given the very small difference between
the uncertainty products of the optimal Mathieu beams and
their Gaussian approximations, the measurement would
also reveal, as a side product, whether such a small devia-
tion from the Gaussian character is observable with the
present commercially available technology.

Figure 2 shows our setup. Two spatial light modulators
(SLM) were used: The amplitude SLM (CRL Opto,
1024� 768 pixels) prepares desired input states, while
the phase SLM (Boulder, 512� 512 pixels) works as an
analyzing hologram.

The beam generated by an Ar laser (514 nm, 200 mW) is
spatially filtered, expanded, and collimated by the lens L1

and impinges on the hologram generated by the amplitude
SLM. The bitmap of the hologram is computed as an
interference pattern of the desired state Us �P
1
m��1 ame

im� and an inclined reference plane wave.
After illuminating the hologram with the collimated
beam, the Fourier spectrum of the transmitted beam is
localized at the back focal plane of the first Fourier lens
FL1 and consists of three diffraction orders (�1, 0, �1).
The undesired 0 and �1 orders are removed by a spatial
filter. After inverse Fourier transformation, performed by
the second Fourier lens FL2, a collimated beam with the
required complex amplitude profile Us is obtained. This
completes the state preparation.

The analysis begins by reflecting the prepared fieldUs at
a phase SLM, whose reflectivity is proportional to t /
eiM�, where � is the azimuthal angle. A Fourier trans-
formation of the reflected field yields the spatial spectrum
�U /

P
mam exp�i�m�M���Am�M���, where Aj�0� � 0

for j � 0 and A0�0� � 0. It is obvious that the component
of helicity m � �M gives rise to a light spot of intensity
I0 � A2

0a
2
m, while the other components do not contribute

 

0 0.2 0.4 0.6 0.8 1
∆E

0

0.1

0.2

0.3

0.4

0.5

0.6

∆
E

∆
L

0 0.5 1∆E
0

0.01

FIG. 1. Theoretical and experimental uncertainty products as a
function of the dispersion. The solid line represents the funda-
mental Mathieu beam, while the dashed line represents the
von Mises approximation. The difference between these two
wave functions appears plotted in the inset. We have included
also the ideal bound given by Eq. (3).

 

FIG. 2 (color online). Experimental setup for the generation of
beams with a von Mises distribution and subsequent detection of
the associated angular-momentum components.
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to the measured intensity. In this way, the weight coeffi-
cients of the superposition can be determined by selective
intensity measurements using a pinhole and a power meter.
Of course, in the real experiment, the signal beams are
transversally bounded, so the intensity of the axial point
does not vanish completely when M � �m. To avoid this
cross talk, calibrating response functions were acquired for
each phase mask.

After the setup was carefully aligned using Laguerre-
Gauss beams, von Mises distributions of transversal am-
plitude (differing by their angular dispersion) were gener-
ated. Each von Mises state was then scanned for values of
the helicities in the range of m 2 ��20; 20�. A typical
preparation hologram and the corresponding raw measured
data are shown in Fig. 3. The angular-momentum distribu-
tion was obtained by correcting these measured intensities
for a nonzero width of the analyzer response function,
which was measured separately for each mask. Finally,
errors were estimated by fitting the measured angular-
momentum distributions to the theoretically calculated
distributions. The resulting experimental uncertainty prod-
ucts are depicted in Fig. 1 by solid circles. Given the
accuracy of the measurements (indicated by error bars in
Fig. 1), they fit quite well the theoretical predictions. Our
present experiment distinguishes between the uncertainty
product of optimal states and the ideal limit. It is, however,
not possible to discriminate between the Mathieu and
von Mises beams. Keeping in mind that von Mises states
play the same role for the spatial degrees of freedom as
Gaussian states for quadratures, the observation of the
nonclassical behavior of angle and angular momentum is
a challenging problem left for future studies.

In conclusion, we have formulated rigorous uncertainty
relations for angle and angular momentum based on dis-
persion as a correct statistical measure of error. An optical
test of the derived uncertainty relations was performed by
using spatial light modulators for both the preparation and
the analysis.
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FIG. 3. Preparation and measurement of a von Mises beam of
dispersion �Ê � 0:435. Left: Computed hologram; right: mea-
sured intensities of components of different helicities m.
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