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The real and imaginary parts of the square of the field amplitude are the variables that describe
amplitude-squared squeezing. These quantities obey an uncertainty relation. Here we find a partic-
ularly simple subset of the states that satisfy the uncertainty relation as an equality. These states are
constructed by applying a squeeze operator to a state that consists of a Hermite polynomial, whose
argument is the mode creation operator multiplied by a constant, acting on the vacuum. The
squeezed vacuum is such a state. These states may or may not be squeezed in the normal sense, and
may or may not have sub-Poissonian photon statistics.

I. INTRODUCTION

Squeezed states of the electromagnetic field are states
for which the noise in a field quadrature component falls
below its classically allowed value. In particular, for a
single-mode field with creation and annihilation opera-
tors @' and a, we define the quadrature components

X,=(a"+a)/2, X,=i(a"-a)/2, (1.1)
which obey the uncertainty relation (=1)

AX,AX,> 1. (1.2)

If AX,<1 for a particular state, then that state is
squeezed in the X, direction. A classical state, i.e., one
with a non-negative definite P representation, must satis-
fy AX, > so that squeezed states are nonclassical.

The states that satisfy Eq. (1.2) as an equality are the
minimum uncertainty states for the variables X, and X,.!
Such states can be generated from the vacuum by the ap-
plication of an appropriate squeeze operator,

S(z)=exp{[z(a")?—z*a?]/2} , (1.3)
followed by a displacement operator,
D(a)=explaa'—a*a) . (1.4)

That is, D (a)S(z)|0) is a minimum uncertainty state for
X, and X, if z is real or pure imaginary. If zO0, then the
state is squeezed, and, in particular, if z#0 and a=0,
then the state is called a squeezed vacuum. If z =0, then
the state is called a coherent state.

It is also possible to define squeezing for variables other
than X; and X,. One can, for example, consider squeez-
ing in variables that are quadratic in the field operators.
The specific variables that we wish to examine are the
real and imaginary parts of the square of the field ampli-
tude.2™* The operators corresponding to these quantities
are

Y, =[(a"+a?1/2, Y,=i[(a")?*—a?]/2. (1.5)
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The commutator of Y| and Y, is
[Y,,Y,]=i(2N +1),

where N =a'a is the number operator. As a result, they
obey the uncertainty relation:

AY,AY,=2(N+1) .

(1.6)

(1.7)

A state is said to be amplitude-squared squeezed in the
Y, direction if (AY,)*<{N+L). Such states are non-
classical. Amplitude-squared squeezing can be converted
into normal squeezing by second-harmonic generation.?

Two different kinds of states have been studied in con-
nection with amplitude-squared squeezing. The first are
the SU(1,1) coherent states. These are natural to consider
because the operators a2/2,(a%)?/2, and (a'a+aa')/4
form a representation of the su(l,1) Lie algebra.
Amplitude-squared squeezing was, in fact, first discussed
by Wodkiewicz and Eberly in connection with these
states.* SU(1,1) coherent states can exhibit amplitude-
squared squeezing but do not, in general, satisfy Eq. (1.7)
as an equality. They are produced from the vacuum by
the action of a degenerate parametric amplifier.#®> The
second class of states consists of the even and odd
coherent states.® These are both eigenstates of a2 (but
not of a) and do satisfy Eq. (1.7) as an equality.® They are
not, however, amplitude-squared squeezed. These states
can also be considered within the context of the su(l,1)
Lie algebra, and this has been done by BuZek.’

The object of this paper is to find a subset of the
minimum uncertainty states for amplitude-squared
squeezing. This subset has been chosen for its simplicity,
and we shall present the somewhat more complicated
general case in a subsequent publication. What we mean
by a minimum uncertainty state is a state for which Eq.
(1.7) is satisfied as an equality. These states have been
called “intelligent states” by some authors,*® but we shall
retain what we believe to be the more conventional
nomenclature.

The paper is organized as follows. In Sec. IT we discuss
the eigenvalue equation that allows one to find the
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minimum uncertainty states and some of the implications
it has for their properties. In Sec. III we solve the equa-
tion and present the subset of its solutions which has a
particularly simple form. In Sec. IV the properties of
these states are discussed. Our results are summarized in
Sec. V.

II. EIGENVALUE EQUATION

The minimum uncertainty states for amplitude-squared
squeezing are the solutions to the eigenvalue problem:

(Y, +iAY)l)=8ly) , 2.1)

where A is real, and 8 is complex. This follows from ex-
amining the difference between the two sides in Eq. (1.7)
and demanding that it be zero. The general procedure
for accomplishing this is discussed in detail in Ref. 9, and
it implies that only the states that satisfy Eq. (2.1) will
satisfy Eq. (1.7) as an equality. We shall prove, in a
somewhat different fashion, that the states that satisfy
Eq. (2.1) are minimum uncertainty states. In doing so we
gain insight into the meaning of the parameters A and S.
In Sec. IIT we shall solve this equation in order to find the
minimum uncertainty states.

As a first step, it is useful to take the expectation of the
operator Y, +iAY, in the state |¢) that is a solution of
Eq. (2.1). This gives

(PlY ) +irdy| Y, |¢) =B .

Because Y, and Y, are Hermitian, their expectation
values are real. Thus Eq. (2.2) implies that

(2.2)

(YlY l¥)=8,, (YIY,l¥)=B/r, 2.3)

where 8, =Ref3 and 3;=Imf. Therefore B is directly re-
lated to the expectation values of Y, and Y, in minimum
uncertainty states.

Now let us multiply Eq. (2.1) by the operator
Y, —iAY, and then take the inner product with [¢/). The
result, after making use of Eq. (2.3), is

WIYT+A2Y39) +indollY,, YL )l9) = 1B1%,
or

(AY, P+AHAY, ) =A{Y|2N +1]¢) . 2.4)

Note that this equation implies that A must be greater
than or equal to zero.

Multiplying Eq. (2.1) by Y,+iAY, and taking the
inner product with |) also provides useful information.
After doing so, and ‘then taking the real and imaginary
parts, we find that

(PlY:—A2Y3|y)=Re(p?) ,

2.5)
MyYlY, Y, +Y,Y,|¢) =Im(B?) .

If we now combine the first of these equations with the
results in Eq. (2.2), we have

(AY)?—AXAY,)?=Re(p?)—B2+B}=0,
or

AY,=AAY, . (2.6)

From this equation, it is clear that A plays the role of a
squeezing parameter. If A=1, then the uncertainties are
equal, and there is no amplitude-squared squeezing. If
A>1, then AY, is squeezed, and if 0<A <1, then AY, is
squeezed.

Finally, if Eq. (2.6) is used to eliminate either AY, or
AY, in Eq. (2.4), then we find that

(AY 2=AYIN +1|p) ,
(AY,)*=(1/M){Y|N +1]y) .

These equations show that AY;AY,=(¢|N +1|¢) and
prove that a solution of Eq. (2.1) is a minimum uncertain-
ty state. They confirm, as well, the comments made in
the preceding paragraph about the role of A as a squeez-
ing parameter. Note, also, that if we know that [¢/) is a
solution of Eq. (2.1), then the photon number determines
AY, and AY,. That is, if {¢/|N|¢) is known, then Egs.
(2.7) can be used to find AY; and AY, immediately, thus
providing a certain economy of computation. This fact
will prove useful later.

(2.7

III. SOLUTION OF EIGENVALUE EQUATION

We now want to solve Eq. (2.1) for [¢). It is first use-
ful to express the equation in terms of creation and an-
nihilation operators:

[(1=A)Xa 22+ (1+1)a2/2]lw)=Blv) . 3.1)

A natural approach, at this point, is to expand |¢) in
terms of number states. This, however, leads to a three-
term recurrence relation for the expansion coefficients,
which is difficult to solve. It is instead simpler to intro-
duce the state

Y )=S(z)"y), (3.2)

which is related to [¢/) by the squeezing transformation
S(z). The parameter z will be chosen later. The state
[4') can then be expanded in photon number states. For
the proper choice of z, the recurrence relation that deter-
mines the expansion coefficients contains only two terms
and can be easily solved.

If we let z =re'%, then we find that |¢’) satisfies

S(Z) [(1=MaMH22+(1+1)a?/2]S )|y )Y =Blv') ,

or
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{[(1—A)(cosh2r) 2+ (1+A)(e¥¥%inh?r) /2](a )+ [(1—A)e ~7% /24 (1+1)e ® /2 ]coshr sinhr (a'a +aa™)

+[(1—=2)

We now want to choose z, so that the coefficient of (afy?
vanishes. The condition for this is

tanh’r =e “29%A—1)/(A+1) . (3.4)

For A>1 we choose =0, and for O0<A <1 we take
@=m/2. The parameter r is then chosen, so that tanh?r is
equal to the absolute value of the right-hand side. Note
that this is always possible, as [(A—1)/(A+1)] <1 for
A >0. With these choices we find that, for 0<A <1,

coshr =[(1+A)/2A]'/%,

(3.5)
sinhr=[(1—A)/21]"%,
and for A= 1,
coshr =[(1+1)/2]'/2,
(3.6)

sinhr =[(A—1)/2]'2 .

These expressions can now be substituted into Eq. (3.3).
The result for 0<A <1is

[a2+i(1—=a)"2aTa + D]y =Blv') , 3.7
and for A= 1 it is
[Aa?+(A2—D"2ata + D1y ) =8ly') . (3.8)
We now expand |1’ ) in terms of number states
lW)=7T3 c,ln), (3.9)
n=0

and substitute this expression into Egs. (3.7) and (3.8).
This leads to the recurrence relations

B—i(1—A%)"*n +1) .
n 2= n 3.10
Cnt2 [(n+1)(n+2)]""2 (3.10)
for0O<A<1,and
B— A —D'%(n+1)
Cpir= = |ea (3.11)
Al(n +1)(n +2)]

for A= 1. Both ¢y and ¢, are arbitrary.

These recurrence relations are easily solved for any
value of 8 and for A > 0. The properties of the states that
result from the general solution will be discussed in a sub-
sequent paper. Here, we wish to examine a particularly
simple subset of solutions. This subset is found by noting
that, if 8 and A are related in the proper way, only a finite
number of the coefficients ¢, will be different from zero.
In particular, if 0<A<1 and B=i(1—AH)"*(m+1),
where m is a non-negative integer, then the series for ")
can be chosen to terminate with c,,|m ) being the last
term. Similarly, if A>=1, and B=(A’—1)"2(m +1),
again with m as a non-negative integer, then ¢, and c,
can be chosen, so that ¢, =0 for n > m.

(e ~%%inh%r) /2+ (14 A)cosh?r /21a?} |4 ) =By’ ) .

(3.3)

f

Let us find explicit expressions for the solutions. If
0 <A <1, then for even m we have

m/2
lY'(m,A)) =3 [i(1—AH)'2]"
n=0
2" (m/2)!
X e im /2 012 G
and for odd m we have
(m—1)/2
W (m, )= 3 [i(1—=A%)12]"
n=0
x 2" [(m—1)/2]
V(2n+1) [(m—1)/2—n]!
Xeyl2n +1) . (3.13)
If A= 1, then for even m we have
m/2
lp'(m,A)) =3 [(A*—1)'2/A]"
n=0
2" (m /2)!
V) (m/2—n) col2ny, (.14
and for odd m we have
(m—1)/2
' (m,\)) = > [(A2=1)12 /07"
n=0
x 2" [(m—1)/2]
vV(Q2n+1) [(m—1)/2—n]!
Xcil2n+1) . (3.15)

The constants ¢, and ¢, are chosen so as to normalize the
states.

It is possible to express these states in a relatively com-
pact form in terms of Hermite polynomials. The nth
Hermite polynomial is given by

[n/2]
H,(x)=3 (—Dk2x)" " *n1/[(n —2k)k!],
k=0

(3.16)

where [n /2] denotes the greatest integer less than or
equal to n /2. The state |¢/'(m,L)) can be expressed as

[/ (m,A)) =c,,(MH,, (iv(Ma")|0) (3.17)
where c,,(A) is a normalization constant, and

y(M)=eA(1—22)1 2 /2] (3.18)
for0<A<1,and

y(M)=[(A2=1)!"2/24]'? (3.19)

for A= 1. Finally, we can combine this with the squeez-
ing transformation to give the minimum uncertainty
states:
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lY(m,A)) =S (z)|¢'(m,A))
=c,,(MS(2)H,,(iy(Maho) (3.20)
where z is defined by Eq. (3.4). It is these states that we
now wish to examine further. It should again be noted
that the states |4(m,A)) are only a subset of the full set
of minimum uncertainty states.
IV. PROPERTIES OF STATES
We now want to discuss some of the properties of the
states |¢(m,A)). First, we shall obtain more explicit ex-

pressions for the photon number and for the uncertainties
in Y, and Y,. Then, it will be determined whether these
states are squeezed in the normal sense and whether their
photon statistics are sub-Poissonian.

Equation (2.7) shows that if we know the average pho-
ton number for these states, then we know AY, and AY,.
Therefore we need to find {y(m,A)|N|(m,A)). This
quantity can, in fact, be expressed rather simply in terms
of the functions |c,,(A)|%. In order to see this, first note
that

(p(m, M| N|p(m, 1)) =|c,, (AM)|2{ (cosh? +sinh?r){O0|H,,(—iy*a)a'aH, (iya)|0)
+coshr sinhr[e “'%(0|H,,(—iy*a)a*H,,(iya")|0)

+e'%0|H,, (—iy*a)a")?H,, (iya")|0) 1} +sinh?r .

The equation

(P(m, M) a?[Y(m,\)) =B, +iB; /A,

4.1)

(4.2)

which follows from Eq. (2.3), and its complex conjugate allow us to solve for {O|H, (—iy*a)a’H, (iya")|0) and
(O|lH,,,( -—iy*a)(af)sz(i‘yaf)lO) in terms of {0|H,,( —iy*a)aTaHm(iyaT)IO), B,, and B; /A. The result for the expec-

tation value of a? is

(cosh?r +sinh?r){0|H,, (—iy*a)a’H,,(iya")|0) =[(cosh’ —e?%inh?r)B, +i(cosh?s +e%inh?r)B; /A1/|c,, (A)|?

—e'®coshr sinhr (O|H,,(—iy*a)(2a’a + DH, (iyah)0) . (4.3)

This result and its complex conjugate can then be substi-
tuted into Eq. (4.1). It remains to simplify the expecta-
tion value of a'a in the Hermite polynomial state. Here,
the identity

aH, (iya")|0)=2iymH, _ (iya")|0) (4.4)
leads to
(0|lH, (—iy*a)ataH, (iya®)|0)
=4|y|>’m*(0|H,, _(—iv*a)H,, _,(iya)|0)
=4m*y1*/lc,, — (M2 . 4.5)

Finally, expressing the quantities 3, v, coshr, and sinhr in
terms of A and m, for 0<A <1 we get

(¢(m,1)IN|g(m, 1))
=2m2M1—21H)"2c,, (M)]*/|c,, — (M)]?

+(1=A)(m +1)/A—(1—-1) /2, (4.6)
and for A =1 we get
(P(m,A)|Nlp(m, 1))
=2mAA*—1)"?|c,, (M2 /A%, (A2
+A2=1)(m +1)/A—(A—1) /21 . 4.7

Let us now use these expressions to find (N ), AY,,
and AY, for |(m,A)), for the cases m =0, 1, and 2. A
straightforward calculation gives

leoMIP=1, le (M)P=1/4]y]*, 4.8)

le,(M[P=1/(32]y[*+4) . '
Turning first to |¢(1,1)), which is a squeezed one-photon
state, we find for 0 <A <1 that

(N)Y=(3—AN)/2),

(AY, =2, (4.9)
(AY,)?=3/2)%,
and for A = 1 that
(NY=03A—1)/2,
(AY,)?=3A%/2, (4.10)

(AY,)?=3.

Note that (N )— e as A goes to either zero or infinity.
As A—0, Y, becomes increasingly squeezed, and (AY,)?
is equal to 3. Similarly, as A— o0, ¥, becomes more and
more squeezed, and (AY,)? is equal to 3.

The state |/(2,A)) is obtained by squeezing a linear
combination of the vacuum and a two-photon state. For
this state, the photon number is

[(15—14A%)/(6—4A?)A]—
(N)= 4H]—

[(15A3—140) /(612 —
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This again diverges as A goes to either zero or infinity. In
this case, however, as A goes to zero, (AY, )? goes to 3,
and as A goes to infinity, (AY,)? goes to 3.

It is also possible to derive an asymptotic expression
for |c,,(A)|? which is valid for large m. This is done in
the Appendix. If the result is used to find the mean pho-
ton number for |Y(m, 7)), then we find for large m that

(m+1)/A—mA/[1+(1-2H)12], 0<Aa<1

(N)= (4.12)

AMm +1)—m/[A+A =12, A>1.

Therefore, for large m we have a situation similar to that
for m =1 and 2. That is, as A—0, the photon number
diverges and (AY;)*—(m +1). As A— o, the photon
number also diverges and (AY,)*—(m +1).

The simplest case is m =0. The state |(0,A)) is just a
squeezed vacuum, so that this state is a minimum uncer-
tainty state for both normal squeezing and amplitude-
squared squeezing. The photon number, in this case, is

(1720)—5, 0<A<l1

(N)= (A—=1)/2, A>1, (4.13)

and we can see that this state follows the pattern set by
those which we have discussed previously.

It is of interest to determine whether the states
|¢(m,A)) are squeezed in the normal sense. Clearly,
|#(0,A)) being a squeezed vacuum is squeezed for all
A#=1. This is, however, not the case for m70. A short
calculation shows that the state |#(1,A)) is not squeezed
if $<A<3, but is squeezed otherwise. Therefore,
amplitude-squared squeezed minimum uncertainty states
may or may not be squeezed in the normal sense.

A similar conclusion is reached if we inquire whether
these states have sub-Poissonian photon statistics. Here,
we start by deriving a simple expression for (AN)? for
l$(m,L)). Noting that Y2+ Y3 =N2+N +1, we obtain

(AY )2+ (AY,?=(N2*+N+1)—B2—(B,/\)?. (4.14)

Using Eq. (2.7) and solving the resulting expression for
(AN)*—{(N), we get

(AN —{(N)=[(A2+1)/A{N +1)

+B2+(B; /A —(N+1)?. (415

If the right-hand side of Eq. (4.15) is negative, the photon
statistics of |¢(m,A) are sub-Poissonian. To illustrate
what can happen, let us consider the case of m =1. Be-
cause |1(1,1)) is just the one-photon number state, it is
clear that for some range of A the photon statistics are
sub-Poissonian. A more detailed analysis, using Egs.
(4.9), (4.10), and (4.15), shows that they are sub-
Poissonian if

2/[1+(I)2 <A< [1+(1)H12] /2, (4.16)

3
and they are not if A is outside this range. One expects
that this behavior is typical for odd m. The state

|(m, 1)), for odd m, is just the one-photon number state
and is, therefore, sub-Poissonian. As A deviates from 1,
the amount of squeezing in the state increases and even-
tually makes the state super-Poissonian.

V. CONCLUSION

We have presented a subset of the minimum uncertain-
ty states |¢¥(m,A)) for the variables that describe
amplitude-squared squeezing. For these states, the ex-
pectation values of Y, and Y, are related to their fluctua-
tions. This is not true for a general amplitude-squared
minimum uncertainty state, where the expectation values
of Y, and Y, can be specified independently of the
squeezing parameter A. The complete set of minimum
uncertainty states will be discussed in a future publica-
tion.

All of the states |9(m,A)) have the property that they
have zero mean amplitude, i.e., the expectation of the an-
nihilation operator is zero. If one displaces one of these
states with a displacement operator D (a), the minimum
uncertainty character of the state is destroyed. This is
because the amount of amplitude-squared squeezing, un-
iike the amount of normal squeezing, is not invariant un-
der displacements.

Perhaps our most interesting result is that the squeezed
vacuum is a minimum uncertainty state for amplitude-
squared squeezing, as well as for normal squeezing. Be-
cause such a state can be produced by a degenerate para-
metric amplifier, it is the most likely of the states
[#(m,A)) to be seen in the laboratory. The other candi-
date for a state, which is, perhaps, not too hard to ob-
serve, is |¢(1,A)). This is a squeezed one-photon state
and can be produced by using a one-photon number state
as the input for a degenerate parametric amplifier.

Finally, we note that as the amount of amplitude-
squared squeezing in these states increases, so does the
photon number. A similar situation occurs with normal
squeezing.!® Thus amplitude-squared squeezed minimum
uncertainty states provide another example of states
whose nonclassical behavior becomes most pronounced
at large photon number.

ACKNOWLEDGMENTS

This research was supported by a grant from the City
University of New York PSC-CUNY Research Award
Program and by the National Science Foundation under
Grant No. PHY-8802683.

APPENDIX

Here we want to find an asymptotic expression for
lc,(A)|? that is valid as n— o. We start by noting the
expression for the generating function for the Hermite
polynomials:

2 0
e =3 (z"/nH,(x) .
n=0

(A1)

Application of this result twice gives
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e*[zz+(z*)2]<0|e—2[z*7/*ae21‘z7/aTIO>
=3 > [(z*)z"]/(nim!)
n=0m=0
X (O|H,(—iy*a)H,,(iya")|0) . (A2)

The left-hand side of this equation can be simplified by
noting that

PP = (0] ~2iz*r*ag2izva’ |y (A3)

Now, set z =re’? and integrate both sides of Eq. (A2),
with respect to 6, from O to 277. The result is

(1/2m)e* I [ 27 g e —2r7cos20)

0

= 2 [(72)"/(71!)2]<0|Hn(—iy*a)Hn(l'yaT”O) )
n=0

(A4)

Equating the powers of 72 on both sides, we get

(O|H,(—iy*a)H,(iya")|0)
=[(2"—1n!)/w]f:”de[zwlz—cos(ze)]"

=[(2"*‘n!)/w]foz"de(zwﬁ—cose)" . (A5)

In order to find an asymptotic form for the integral as
n— oo, we first express the integrand as
exp[n In(2|y|>—cos@)] and apply the Laplace method.'!
This involves finding the maximum of 1n(2]'y|2—cos6')
(which occurs at =) and then expanding about it,
keeping only lowest-order terms. The resulting integral is
Gaussian and can be performed. The result is

f027d6(2|y\2—c059)"

=Q2ly P+ 1) [w4ly?+2)/n]"?,  (A6)
so that
(O|H,( —iy*a)Hn(iyawO)
=2" 12|y P+ D) 4ly P+ 2) /na] 2 (A7)

for large n. The function |c,(A)|? is simply the reciprocal
of this expression.
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