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Using only elementary quantum-mechanical concepts, the statistical properties of various
harmonic oscillator states that are linear superpositions of its energy eigenfunctions are described.
These superpositions include coherent states and squeezed (or two-photon coherent) states. The
resulting Gaussian, minimum-uncertainty wave packets are shown to oscillate back and forth for
both coherent and squeezed states, but with an oscillating “width” for the squeezed states. Also
examined are the principles underlying the production of squeezed electromagnetic waves via
parametric amplification or four-wave mixing, their measurement by homodyne detection, and
the connection between squeezing and non-Poissonian counting statistics.

1. INTRODUCTION

Squeezed states of the electromagnetic field have re-
ceived increasing theoretical attention'~'* during the last
few years, and recently several laboratories have obtained
experimental evidence of squeezed states produced by var-
ious nonlinear processes.'*~'° Squeezed states give promise
of measurement results better than those normally expect-
ed from the Heisenberg uncertainty principle, especially in
connection with optical interferometers used to measure
the relative positions of gravity-wave detectors® and in op-
tical communications.>"** Despite all this attention by re-
searchers, there has not yet appeared a tutorial article on
squeezed states that develops physical models from ele-
mentary principles at a level accessible to nonspecialists.
We hope that this article will fill that gap in the literature of
squeezed states.

The electromagnetic radiation in each standing-wave
mode in a cavity resonator has been shown?’ to be analo-
gous to a harmonic oscillator. The oscillator’s displace-
ment x can be taken to correspond to the radiation mode’s
electric field and then the oscillator’s momentum p corre-
sponds to the mode’s magnetic field. Just as the position
and momentum of the oscillator are 90° out of phase in
time, so are the electric and magnetic fields of the radiation
mode 90° out of phase in time at each point in space. The
energy of the oscillator sloshes back and forth between po-
tential and kinetic, just as the energy of the standing-wave
field sloshes back and forth between electric and magnetic.
{Notice that we are dealing with a standing wave; for a
traveling wave the electric and magnetic fields are in
phase.) The familiar quantization of the oscillator’s total
energy corresponds to having only an integral number of
photons in the radiation mode.

We will describe squeezed states quantum mechanically,
in terms of linear combinations (superpositions) of har-
monic oscillator energy eigenfunctions. For certain linear
combinations, known as coherent states,>* the variances
(squares of the uncertainties) of position and momentum
are constant in time and their product equals the minimum
value allowed by the Heisenberg uncertainty principle.
But, for the linear combinations that produce squeezed
states, the variances of the position and momentum oscil-
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late in time 180° out of phase with one another and at twice
the oscillator frequency. And, at any instant of time, one of
the variances can be smaller than the square root of the mini-
mum-uncertainty product.

Squeezed oscillator states are analogous to the following
classical situation. Imagine an ensemble of identical oscil-
lators (same resonant frequency) all having nearly the
same displacement from equilibrium, x,, at ¢ = 0 but hav-
ing a very wide distribution of momenta. A quarter cycle
later, we would find a very wide distribution of displace-
ments due to the wide range of initial momenta. But, after
one-half cycle, we would again find all the oscillators
grouped on the other side of the equilibrium position, near

— x,. The uncertainty in displacement has undergone an
oscillation. The only difference in quantum mechanics is
that if all the oscillators had nearly the same initial dis-
placement, then their initial momenta would necessarily be
spread over a wide range, consistent with the Heisenberg
uncertainty principle.

We begin by reviewing the harmonic oscillator eigen-
functions (number states) and the annihilation and cre-
ation operators in Sec. II. Section III deals with linear com-
binations of number states and shows that the coefficients
characterizing these linear combinations rotate in the com-
plex plane. We also show how the complex rotating pha-
sors used to describe a classical oscillator are related to the
annihilation and creation operators. In Sec. IV we define
the coherent states to be eigenfunctions of the annihilation
operator, find their number state coefficients, and show
that the coherent states are minimum-uncertainty states in
the sense of the Heisenberg uncertainty principle.

Section V introduces squeezed states as eigenfunctions
of a new quantum-mechanical operator, which is a linear
combination of the annihilation and creation operators,
and shows that squeezed states are characterized by oscil-
lating variances. Section VI then describes how squeezed
states can be generated through nonlinear processes such
as parametric amplification and four-wave mixing. In Sec.
VII we demonstrate how homodyne detection can produce
a squeezed measurement with a nonoscillating uncertainty
that is smaller than the usual uncertainty principle limit.
Section VIII concludes with a summary and some addi-
tional comments about squeezed states and the utility of
our methodology.
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II. REVIEW OF HARMONIC OSCILLATOR
ENERGY EIGENFUNCTIONS

Our entire discussion is based on the set of orthonormal
energy eigenfunctions of the harmoric oscillator, ¢, (x),
n=0,1,2,... . These are derived in most quantum me-
chanics texts,”> beginning with the time-independent
Schrodinger equation. The energy eigenfunctions are also
called number states and represented by a Dirac ket, |n), to
denote the fact that a number state has a definite number of
quanta of energy.

From the freedom to define the magnitudes of three me-
chanical “units,” we can set 4 /2, the oscillator mass m,
and its spring constant %, all equal to 1. In these units, the
number states, each a product of a fixed-width Gaussian
and a Hermite polynomial, H, (x), are

¥, (x) =2""2(n) "2~ Viexp( — x*/2)H, (x),

n
where the H, (x) are defined recursively by
Ho(x) =1,
H,(x) =2x, 2)

H,(x)=2xH,_,(x)—-2(n—1)H, _,(x).

We may think of Eqs. (1) and (2) as establishing the
connection between the x representation of a quantum
state, i.e., the wave packet, and the n representation. In
Dirac notation, #, (x) is equivalent to (x|n), where the
bracket indicates the “projection” of the number state into
the x representation. While either representation contains
complete information about the state, in subsequent sec-
tions we will generally define our states in the » representa-
tion, i.e., in terms of the contributions from the various
number states, and then convert to the x representation via
Egs. (1) and (2) to acquire physical insight.

We are primarily interested in computing the uncertain-
ties in the oscillator’s position and momentum for the num-
ber states and for various linear combinations of number
states. These uncertainties are best characterized by the
mean-square deviations from the average, or variances:

var(x) = (x2) — (x)? (3)
and
var(p) = (p*) — (p)*, 4

where the symbol { ) denotes the quantum-mechanical
ensermble average, or expectation value.

If we know an oscillator’s full position- and time-depen-
dent wavefunction ¥(x,t), we can calculate these average
values (which, in general, depend on time, as we will dis-
cuss in more detail later) by means of integrals such as

(x) = fw Y*(x,0)xy(x,t) dx (5)
and
(p) =J- ¢*(x,t)(—i—d- ¢(x,t)) dx . (6)
— > dx

Here, #*(x,t) is the complex conjugate of ¥(x,t) and
— i(d /dx) represents the momentum operator p in the x
representation.

The integrals for (x), (x?), { p), and ( p*), needed to
calculate var(x) and var( p), are tedious to carry out; an-
other method, due to Dirac,? in which we calculate in the n
representation rather than the x representation, is pre-
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ferred. In Dirac’s method we work entirely with new oper-
ators called annihilation and creation operators, @ and 8*.
These operators are defined in terms of the position and
momentum operators by

a=(x+ip)/v2 )
and the Hermitian conjugate
at=@R—-ip)/v2. (8)

Dirac showed that & operating on any number state |n)
gives {/n times the next Jower state |n — 1) and 4™ operat-

ing on any number state gives yn + 1 times the next higher
state [n + 1). That is,

aln) =n |n—1) (9
and
atiny =ynF T |n+1). (10)

The terms “creation” and “annihilation” come from the
fact that 4+ produces a state with one more quantum of
energy, while @ produces a state with one less.

These operators have the additional properties

a*a|n) =n|n) (1)
and
aa*t —-ata=1, (12)

which may be demonstrated by repeated use of the creation
and annihilation properties described in Egs. (9) and (10).
Notice that in Eq. (12) we have not written a ket; all num-
ber states and, therefore, all linear combinations of number
states are eigenfunctions of (a3 — a*a) with eigenvalue
unity.

To calculate the averages needed to find the variances of
x and p for any state, we first solve'Egs. (7) and (8) for the
position and momentum operators:

£=(a+ar)V2, (13)
p=(a—a*)/3. (14)

By squaring (13) and (14) we can express operators > and
a2 .
P’ as

¥ =(a%va+aa*t +aas+atat)/2 (15)
and
pPP=(a%a+dat—aa—avat)2. (16)

The integral expressions for the averages are then re-
placed with Dirac brackets; for example,

(x) = (Y|x|¥) = (Y|[(@ +a*)/VI]|¢) (17)
and .
(p) = (Wp|Y) = (Y|[(@—a*)/iv2]|¥) . (18)

From (17) and (18) we can deduce that if ¢ is a number
state, then the average position and momentum are zero.
This is because @ + @™ operates on |n) to produce linear
combinations of |n — 1) and |n + 1) and because the sca-
lar products {n|n — 1) and (r|n + 1) are zero by orthog-
onality.

The variances of the number states are not, however,
zero. From Eq. (15) we have

(x*) = (n|[(@*a+aa* +aa+a+at)/2]|n)y. (19)

Using Eqgs. (11) and (12), we can combine the first two
operators in (19) to give

a*ta+aat=2a%a+1=2n+1. (20)
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Fig. 1. Magnitude of vacuum, or |0), state versus position.

The contribution from the operators 84 and 4*a™ is zero

because they give terms proportional to |n—2) and
|n + 2), which are orthogonal to {n|. So we obtain

(x*) = (n|[Qn+1)/2]n) =n+1}. 2D
The result for { p?) is the same, so with (x) = ( p) =0, we
find, for number states,

var(x) =var{p) =n+1. (22)

The product of the number state variances is

var(x) var(p) = (n +14)*, (23)

which expresses the Heisenberg uncertainty principle for
the oscillator number states. The vacuum state, n = 0, has
the smallest uncertainty product of all the number states, 1,
and is said to be a minimum-uncertainty state. And because
the vacuum state, like all number states, has zero average
position and zero average momentum, it is a stationary,
minimum-uncertainty wave packet with constant width, as
is illustrated in Fig. 1.

II1, LINEAR COMBINATION STATES

The number states form a complete orthonormal set, so
the most general state imaginable is a linear combination of
the number states with time-dependent coefficients. We
can write such a state as

oo

P =Y c,()|n),

n=0
where ¢, () are complex numbets and the number states
|n) contain the x dependence.
The time evolution of the complex expansion coeffi-
cients ¢, () is governed by Schrddinger’s equation,

; di(x,t)
dt
where the Hamiltonian operator H for the harmonic oscil-
lator is found by writing its classical total energy in terms of
x and p and then replacing x and p by their operators. From
Eqgs. (15) and (16), we obtain
H=3/24p/2= (38" +6%a)/2
=ata+i=n+}, (26)
50 the effect of the Hamiltonian operator operating on a
general term, c,, () |n) on the right side of (24) is simply to

(24)

= Hy(x,1) (25)
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multiply it by n + 1. That is,
Hc, ()|n) = (n+1)c, (1) |n) . (27)

Substituting from (27) into the Schrédinger equation
(25), and equating coefficients term by term, we find a set
of uncoupled first-order differential equations,

i%cn(t)z(n+—;—)c,,(t), n=0,12,..., (28)

a general one of which has the solution
¢, (1) =c,(0)eint 12 (29)

It is standard practice to ignore that part of the phase fac-
tor, e ~ /2" which is common to all of the coefficients.
With that convention, each coefficient rotates clockwise in
the complex plane at a rate proportional to its # value. The
physical significance of each c, is that its squared magni-
tude represents the probability of measuring # quanta in
the oscillator; these probabilities are seen to be independent
of time.

We show next that the annihilation and creation opera-
tors are analogous to the classical phasors, Ae ~ " and 4 *e”,
used to describe a real sinusoidal oscillation at unit angular
frequency. To make this connection between classical and
quantum worlds, consider the quantum representation of
the average position (x) of an ensemble of oscillators repre-
sented by a general state |¢). The two terms (1//]:1/\/711/))
and (¥|a* /v2|¢) evaluate as follows at some general time
t. First, we operate with @ on the ket:

alvy =a io ¢, (0)e™ " |n)

=3 ¢, (0e~"n |n—1).

n=1

Then we take the scalar product with

Wl=3 cx(0e" (n]

o
to give

Wlalgy =e=* 3 JnF1ct0e,,, 0.  (30)
In similar fashion, n;eoﬁnd

Wlaty =¢" ¥ i, e, ©. (D)

n=0
Using results (30) and (31) in Eq. (17), we find the
following general expression for the time dependence of the
expectation value of x:

(x) =\/§Re(e"" i yn+1 c,",‘(O)c,,+l(0)) . (32)
n=0

This expectation value is real, as it must be if it is to repre-
sent a physical measurement.

Finally, comparing this quantum expression with the
corresponding classical phasor representation of a sinusoi-
dally oscillating quantity,

{(x) =2Re(de™ "), (33)
we see that the summation over the coefficients in Eq. (30)
[and (31)] provides the quantum analog of the classical
phasor amplitude 4 (and 4 *). (Notice that we would have
obtained the same time dependence for (x) if we had asso-
ciated an e ~ “ time dependence with the operator aand had
treated the ¢, coefficients as constants in time. This is the
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Heisenberg, rather than the Schrodinger, interpretation of
quantur mechanics. )

To summarize, the prescription for going from the classi-
cal description of an oscillator to the quantum-mechanical
description is simply to replace the classical phasor A by the
quantum-mechanical operator a or, more precisely, by the
bracket (Yfa/y).

In the following sections we define particular quantum
states to be eigenfunctions of certain operators. Then, with
the help of a personal computer, we develop a physical
picture of the state as follows. First, we find the specific
numerical values of the c¢,(0), which define the state
uniquely. These values are found from computationally ef-
ficient recursion relations that we show how to obtain later
on. Beginning with a trial value of ¢,(0) = 1, the computer
calculates higher c,,’s, usually up to n = 80, and normalizes
them so that =& |c, |* = 1. Then, it calculates the shapes of
wave packets, i.e., graphs of ¥ (or |¢|) vs x, at various
times by using the numerical values of ¢, (0) in Eq. (29) to
find the ¢, (¢) and then combining the ¢, (¢) with the values
of the number states at each x from Egs. (1) and (2).

We have found our computer-generated wave packet
graphs to be of enormous help in understanding the proper-

ties of various special linear combination states. These spe- :

cial states include coherent states (the subject of Sec. IV),
generalized number states, and, of course, squeezed states.

IV. COHERENT STATES

Not every linear combination state is a minimum prod-
uct state in the sense that var(x)var( p) = 3, as occurs for
the [0), or vacuum, state. But special sets of ¢, (¢) that
produce minimum product states do exist; one such set is
known as the coherent states. The squeezed states, de-
scribed in Sec. V, are a more general class of minimum
product states.

We define a coherent state |@) to be an eigenfunction of
the annihilation operator 4, with some eigenvalue @ (which
may be a complex number). That is,

dla) = ala). (34)

Like any other state, a coherent state represented as a linear
superposition of number states. Considerable insight into
the physical meaning of a coherent state can be obtained by
evaluating the coefficients of such a linear superposition.
To do so, we substitute the general series expansion [Eq.
(24)] into Eq. (34). Thus

a ngocnl”) 2,21 enln—1)=a ngoc,,ln) . (35)

(Here, all the c, represent their values at # = 0.) Now, by
matching the coefficients of each number state in the sec-
ond equality, we can write a set of recursion relations that
allows us to evaluate each coefficient in terms of the next
lower one:

cl = acO ’
e, =ac,/V2, (36)
¢ =ac,_,/Jn .

The general coefficient ¢, is expressible in terms of c,:

¢, =cola™/ynl) . (37
Using this general expression for the coefficients, we can
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evaluate ¢, by imposing the normalization condition,

o«

1= Y le,P=lel* 3 (lal)/nl= |col%!",
n=0 n=0
which yields

—lal?/2

(38)
The physical interpretation of a coherent state stems from
the fact that |c, |* represents the probability P, of measur-
ing n quanta in the oscillator {or, equivalently, of measur-
ing an energy equal to n 4 1). In the case of a coherent
state,
P, =le,]? =e " [(ja])/nl] = e~ [(m)/nl]

(39)

lcol =

where we have made the replacement
la|* = (n) .
Equation (39) represents a Poisson distribution. That is, P,
is the probability of detecting n independent events in a
fixed time interval if (n) = |a|® is the average number of
events per time interval. Experimentally, it is found that
single mode laser light approximates coherent light and,
consequently, has the expected Poisson counting statistics.

So we arrive at the following physical interpretation of a
coherent state. A coherent state /a) is that linear combina-
tion of number states whose squared coefficients [c,, |* repre-
sent the probabilities of detecting n quanta in a Poisson dis-
tribution with average number of quanta Ja/> To actually
detect the number of photons in a standing light wave, one
must let them out of the optical cavity in which they are
trapped and let the resulting pulse fall on the cathode of a
photomultiplier tube. For example, if one mirror of the
cavity is suddenly switched from perfectly reflecting to per-
fectly transmitting, the light pulses will have a duration or
“coherence time” equal to twice the cavity length divided
by c¢. This is the counting time implied in the preceding
paragraph. A distribution of counts could be obtained from
an ensemble of identically prepared cavities. »

To show that a coherent state is indeed a minimum prod-
uct state, we must calculate the variances of x and p. The
details, given in the Appendix, show how straightforward
it is to calculate the expectation value of any operator that
can be written in terms of the operator for which the state is
an eigenfunction. The expectation values of x, p, x* and p*
for a coherent state |a) are, from the Appendix,

(x) =+2(n) cost,
(p)= —2(n) sint,
(x?) =2(n) cos’t +1,
and (40)
(P =2(n)sin*t+1.
The variances, from Eqs. (3) and (4), are

var(x) = var(p) =1, (41)

which yields the minimum product, . Notice that the var-
iances are indeperndent of both time and the average num-
ber of quanta in the state; all coherent states are minimum
product states with variances equal to those of the vacuum
state.

Unlike the number states, the coherent states are seen to
have oscillating expectation values of position and momen-
tum. In fact, the average position {x) is seen to lag the
average momentum { p) by 90°, just as in a classical oscilla-
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Fig. 2. A coherent state with an average of five quanta. (a) Oscillating
wave packet at various times [magnitude of ¥/(x,2)]. (b) Number state
coefficients ¢, (at t = 0), obtained from recursion relations (36).

tor. Furthermore, the amplitudes of oscillation of (x) and
( p) are proportional to the square root of the average
number of quanta, just as those amplitudes in a classical
oscillator are proportional to the square root of the oscilla-
tor’s energy.

Figure 2(a) shows a coherent state wave packet, having
an average number of quanta equal to 5.0 at }-cycle time
intervals.”” The packet has the same Gaussian form as the
stationary |O) state wavefunction (see Fig. 1), but it oscil-
lates back and forth along the x axis in the same manner as
a classical oscillator. Clearly, the coherent states, not the
number states, are the quantum-mechanical analogs of the
classical oscillators we observe.

Figure 2(b) is a bar graph of this coherent state’s coeffi-
cients at time ¢ = 0, calculated from the recursion relations
of (36). The squares of these coefficients represent the

Poisson probabilities of measuring n quanta in the oscilla-

tor.

V.SQUEEZED STATES

We have seen that the variances of x and p are indepen-
dent of time for the number states and for the particular
linear combinations of number states that form coherent
states. But a general linear combination state has variances
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that oscillate sinusoidally in time. This is because the cos? ¢
and sin’ ¢ terms in (x?) and ( p*) in Eq. (40) no longer
cancel out when the variances are computed, as they do for
a coherent state.

A stateis said to be “squeezed” if its oscillating variances
become smaller than the variances of the vacuum state. We
will see that the product or the variances attains a mini-
mum value only at the instants that one variance is a mini-
mum and the other is a maximum. If the minimum value of
the product is equal to 1, then the state is called a minimum-
uncertainty squeezed state.

Squeezing is a phenomenon observed experimentally
only in special linear combination states produced by some
nonlinear process, such as four-wave mixing®~"!81928 or
parametric amplification.>'® As we discuss in Sec. VII,
one can use homodyne detection®®*=*? to measure the qua-
drature of the squeezed signal in which the noise has been
reduced, thereby producing, in principle, a virtually noise-
free measurement.

Ignoring for the moment the experimental challenges of
producing squeezed states, we will show that it is straight-
forward to write down linear combinations of number
states that show squeezing. Suppose, for example, we want
to represent some general f(x,?) by a linear combination of
number states. And suppose further that we want this func-
tion to have some particular “shape,” say, a very narrow
pulse, at ¢t = 0. Then, to find a particular coefficient ¢, (0)
in the linear expansion,

f(x,0) =Co(0)|0) +C1(O)|1> +

we multiply both sides by (n| and carry out the integration
over x. Because the number states are orthogonal to one
another (and normalized), the rhs reduces to the single
number ¢, (0) so that

(42)

(n] f60) =f PEx) F(0) dx=c,(0) . (43)

In this way, one could compute the initial values of the
coefficients for any initial shape, provided the integral con-
verges. Once the ¢, (0) are computed, one can find the
¢, (t) from Eq. (29) and then multiply them by the time-
independent number states [Eq. (1)] to find the explicit
time and position dependence of the wave packet.

The wave packets that result from this process must obey
the uncertainty principle at every instant of time. If, for
example, at =0, we choose an f(x,0) with a small
var(x), then var( p) at that instant will be at least as large
as 1/[4 var(x)]. We will see that the shape that leads to a
minimum-uncertainty squeezed state is a Gaussian pulse.

But rather than computing squeezed-state coefficients
via Eq. (43), we shall now demonstrate another way of
finding the coefficients, one that leads directly to mini-
mum-uncertainty squeezed states.

We will show in Sec. VI that a quite general property of a
nonlinear device is to create negative and positive frequen-
cy output phasors B and B * that are each linear combina-
tions of the input phasors 4 and 4 *. That is,

B=uA+vA*
and

B*=yu*4* +v*4, (44)
where u and v are complex numbers. Then, by the general

correspondence between classical phasors and annihilation
and creation operators discussed in Sec. II1, we can write
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the following quantum-mechanical operators to represent
these output phasors:

b=pa+va*t
and (45)

bt =p*a*t +v4a.

Now, recalling that an input coherent state is an eigen-
function of &, we might expect the output state to be an
eigenfunction of b. The eigenfunctions of b are squeezed
states; they were called two-photon coherent states by
Yuen? and were studied extensively by him and by Stoler.>*
But, instead of following their highly mathematical ap-
proach, we will attempt to develop a physical understand-
ing of these squeezed states and discover their statistical
properties by precisely the same method we used for the
coherent states, namely, by writing them as linear combi-
nations of number states and then finding recursion rela-
tions that define the coefficients. .

Ifasqueezed state | B ) is to be an eigenfunction of b with
eigenvalue f3, then

b|BY=8|B)

or
(pa+vat) Z c.|n) =8 Z c,|n) .
n=0 n="~0

Here, the ¢, represent the number state coefficients for the
squeezed state at ¢t =0. Operating term by term with
pua@ + va* we have,

15> Jne,jn—1) +v > Jyn+1lc,|n+1)
n=0

n=1

(46)

=B Y c.ln). (47)
n=0

And finally, by equating coefficients of each number state,

we obtain the desired recursion relations:

cl = ﬂco/,u ’
¢, = (B, — ve) /uv2,
and, in general,

Bcn—l —wWn — 1 Cp_2
pn

For a given set of numerical values of , v, and 8, we can
begin with an arbitrary value of ¢, and find the numerical
values of the rest of the coefficients recursively, just as we
did for the coherent states in Sec. IV. The value of ¢, is then
adjusted for normalization, i.e., £7_q|c, |* = 1.

It is clear from an inspection of these recursion relations
that there are only two, not three, independent parameters,
because the ratios, B /i and v/u, uniquely determine all
the coefficients. Therefore, provided | z| > |v|, so that the
sequence of ¢, converges, we are at liberty to choose
| £]> — |v|*> = 1. This particular choice of z and v results in
bb+ —b b= (ua +va*t)(p*a* + v*a)

—(p*a" +v*a)y(uad +va*) =1, (49)
which is analogous to the corresponding “commutation
relation” for g and a* [Eq. (12)].

It is tempting to think of b * b as the “number operator”
for a squeezed state, but this is incorrect. The expectation

value of the number of ordinary quanta » is defined by
3§ nlc, |?, which is equal to (3+a) for all states by Eq.

(48)

c, =
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(11). But we can interpret (& +b ) as giving the number of
“somethings.” These somethings are not ordinary quanta;
instead, we might call them “generalized quanta.” We shall
try to explain this concept by describing a set of states
called “generalized number states” by Yuen.?

Recall that we could build up the infinite set of ordinary
number states by starting with the ordinary |0) state and
operating repeatedly with the creation operator &*. In ex-
actly the same way, we can build up the set of generalized
number states by starting with the generalized zero state
and operating repeatedly with the b * operator. But what is
this generalized zero state? The ordinary zero state has the
property that a operating on it gives zero. By analogy, the
generalized zero state has the property that b operating
on it gives zero. But this is just the squeezed state defined by
the recursion relation in (48) with 8= 0! As you can see
from those recursion relations all the odd coefficients, c¢,,
¢, etc., are zero, but ¢, ¢, etc., are not zero. We can then
compute the coefficients of the generalized one state by
operating on the generalized zero state with & *. Now all
the even coefficients are zero while, in general, the odd ones
are different from zero. Continuing in this way and denot-
ing the mth such generalized number state by |m), we can
obtain the state |m + 1) from |m) by

im+1)=b%\m)/\m+1,
just as we can obtain the ordinary number state |n + 1)
from |n) by operating witha*/yn + 1 on |n) [Eq. (10)].
Note particularly that the various generalized number
states produced by this scheme are already normalized; no
further scaling of the coefficients ¢, for each state is neces-
sary.

We can now find the average number of ordinary quanta
in a generalized number state. For example, we leave the
reader to show that the average number of ordinary quanta
in the generalized one state is given by u” 4+ 22 = 2u” — 1.
(Hint: Use steps 1 and 2 beneath Table I to write a‘tain
terms of & *b. Then operate on the generalized one state
and take the scalar product with its Hermitian conjugate.)

When the wave packets represented by the generalized
number states are computed and plotted as functions of x,
we get a rather startling and wonderful result. The graph of
|¥(x,t)| for any generalized number state has the same
shape as the corresponding ordinary number state, but the
scale along x oscillates as a function of time. That is, the
width, separation between zeros, etc., all oscillate sinusoi-
dally in time. The generalized number states ‘“‘breathe”!

What is the physical significance of a generalized num-
ber state? There is no detector, corresponding to a photo-
multiplier tube, for the generalized quanta, and no one has
produced a generalized number state experimentally. So

Table I. Comparison of expectation values (u,v, and £ real).

Coherent Squeezed
{x) viacost vIB(u—v)cost
{p) —vV2asint —vV2B(p—v)sint
(n) @ B —v)? + v
var(x) 3 (42 + v —2uvcos 2t)/2
var(p) ) (@ + V2 +2uvcos 2t)/2
var(n) a? B2~ ) + uW
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what is a generalized quantum? Apparently it is just an-
other sort of excitation of the oscillator (or electromagnet-
ic field).

The generalized number states form an orthonormal set,
so any state of the oscillator should be expressible as a lin-
ear combination of them. For example, any squeezed state,
when expressed as a linear combination of generalized
number states, has a particularly simple set of coefficients;
these are just the coefficients that lead to a Poisson distribu-
tion. (The proof is identical to the steps leading up to Eq.
(47), with a replaced by b, |a) replaced by | 8 ), and the
ordinary number states replaced by the generalized num-
ber states.) In other words, if we could build a generalized
photon detector, a squeezed state would show up as a Pois-
son distribution of generalized photons.

The analogy between a and b, etc., can be used to find the
number of generalized quanta in a squeezed state. This is
just{B|b *b| B) = B> Contrast this result with the aver-
age number of ordinary quanta in a squeezed state
(Bla*a|B) =PB*(u —v)> ++* (see Table I). Thus the
number of generalized quanta can be larger or smaller than
the number of ordinary quanta depending on the values of
u and v.

Although generalized number states have not been pro-
duced experimentally, squeezed states (eigenfunctions of
b) have been, and we devote the rest of our discussion to
them. Figure 3(a) illustrates the oscillating wave packet
for a squeezed state with u=15 v=(u>—1)"2

= 1.118, B = 3. This packet has an oscillating width, but
itis a minimum-uncertainty packet because, at ¢ = integral
multiples of 7' /4, the product of the variances of x and pis }
just as for a coherent state. The variances of a squeezed
state actually oscillate in time between (u + v)?/2 and
( 4 — v)?/2, completing two oscillations in one oscillator
period [see Fig. 3(c) and Table I]. Strong squeezing is
indicated by the fact that the variances dip well below the
value of 4, the variances of the vacuum state.

Table I shows the expectation values of displacement,
momentum, and number of quanta, along with their var-
iances, both for the coherent states and for the squeezed
states (for the special case of S, u, and v all real). Notice
that {(n) represents the number of ordinary quanta. The
number of generalized quanta in a squeezed state is 872, as
noted above.

The squeezed-state formulas in the table are most easily
derived by the following procedure.

(1) Write the appropriate operator in terms of b and b,

ie., as fA(b b *), by solving Eq. (45) for & and a* 'n
terms of band b *.
..(2) Use the commutation relation in the form
bb* = b*b + 1asmany times as is necessary to move all
b *’sin each term to theleft of all 5 s. The result is called the
normally ordered form.

(3) Use the eigenvalue equation, b |8 ) = |5 ),and its
Hermitian adjoint, (8 b+ =B *{B|, to evaluate the ex-
pectation value (83| f(b,b *)|B).

The squeezed-state wave packet shown in Fig. 3 has its
minimum variance at the positions of maximum displace-
ment. Can we also find squeezed states for which the mini-
mum variance occurs at zero displacement, or perhaps at
some arbitrary point in the cycle? Yes, we can, just by
changing the relative phase of the complex numbers x and
v. Figure 4 shows a wave packet for the case f=0.5,
p = 15,v= — 1.118. The extrema of var(x) are the same
as for the wave packet in Fig. 3, but the minimum variance
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Fig. 3. Squeezed state, an eigenfunction of the operator pa + va* with
eigenvalue 8 = 3.0 and with 4 = 1.5, v = 1.118. (a) Oscillating mini-
mum-uncertainty wave packet with oscillating variance. Minimum x
variance occurs at maximum displacement. (b) Number state coefficients
at ¢ = 0. (c) Variances of x and p versus time. ‘

occurs at zero displacement in Fig. 4. For cases in which
the phase of v is neither 0° nor 180° the minimum variance
occurs at points in the cycle other than at maximum or zero
displacement.

Another important property of squeezed states is the re-
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lation between (n) and var(n). For a coherent state,
var(n) is precisely equal to (n), which reflects the fact that
the squared coefficients form a Poisson distribution. But,
for a squeezed state, var(n) can be either larger or smaller
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Fig. 5. Variance of number of quanta versus average number of quanta in
squeezed states for different amounts of squeezing (u ), with  and v both
positive. Data points represent 8 = 0, 2, 4, 6, 8 for each line.

325 Am. J. Phys., Vol. 56, No. 4, April 1988

Y VanYs
NPANPANY

Fig. 6. Phase-space graphs for quantum oscillators, showing uncertain-
ties. (a) Coherent state, equal uncertainties in position and momentum.
(b) Squeezed state with minimum var(x) [or var(p)] occurring when
(x) (or {p)) has maximum displacement from zero. (c) Squeezed state
with minimum var(x) [or var(p)] occurring when (x) (or { p}) is zero.

than (n). Figure 5 shows how var(n) depends on {n) for
four values of u and for i and v each real and positive, as 8
is varied. The linear relation between var(n) and (n) for
fixed u and v occurs because var(n) and (1) have the same
functional dependence on S (see Table I). The slopes of the
straight lines, equal to ( u — v)?, decrease as u and, there-
fore, v increase, while their intercepts on the var(n) axis
increase.

The interesting feature illustrated in Fig. 5 is that for any
value of u greater than 1 and for positive v, the distribution
of quanta always becomes sub-Poissonian for a large
enough average number of quanta; that is, var(n) becomes
smaller than (n). If sub-Poissonian statistics are obtained
for the photons in a traveling electromagnetic wave, those
photons are said to be “antibunched.” ***° In such an anti-
bunched beam the photons are more uniformly spaced in
time than the photons in a coherent beam having the same
average number of photons per second. The reduction in
uncertainty of the number of photons counted in a fixed
time interval would reduce the “noise” in any communica-
tion system that is based on photon counting.

‘One’s physical intuition regarding the relationship be-
tween photon counting statistics and the phases of the vari-
ance oscillations relative to the average position oscilla-
tions can be enhanced by the phase space (momentum
versus displacement) graphs of Fig. 6. These graphs are
extensions of the classical phase-space diagram for an oscil-
lator. Classically, an oscillator’s phase-space trajectory is a
circle (for appropriately normalized variables). In the
quantum picture, the instantaneous position and momen-
tum in phase space are blurred by the uncertainty principle.
Because the oscillator’s average energy is [from Eq. (26)]
proportional to the average square of the radius vector in
phase space and to its average number of quanta (plus 1),
we see that the oscillator states represented by the rotating
blur have uncertainties in their energy and in their number
of quanta.

Figure 6(a) represents a coherent state, for which the
uncertainties in position and momentum are equal as sug-
gested by the error circle. We saw earlier that the counting
statistics are Poissonian for a coherent state. Figure 6(b)
shows a squeezed state of the type shown in Fig. 3, the
minimum of var (x) at maximum displacement, as suggest-
ed by the error ellipse with its major axis always tangent to
the phase-space trajectory. For this case, the radius vector
is also squeezed, which accounts for the possibility of sub-
Poissonian statistics. But, in Fig. 6(c), which shows a
squeezed state with the major axis of the error ellipse al-
ways in the radial direction, we have an example of super-
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Poissonian statistics [var(n) greater than (n)]. For exam-
ple, for the case shown in Fig. 4, Table I yields the values
{n) = 2.96, var(n) = 17.39.

VI. GENERATION OF A SQUEEZED OPTICAL
STATE

To date, attempts to produce squeezed states at optical
frequencies have involved either parametric amplification
or four-wave mixing. Both of these processes involve non-
linear interactions, in which a weak signal wave is mixed
with (multiplied by) a strong “pump” wave. The result is
an output wave that typically contains a rich mixture of
harmonics and sum and difference frequencies. Both para-
metric amplification and four-wave mixing are phase-sen-
sitive processes, which means that the amplitude of the
output wave depends on the relative phase of the signal and
pump. Generally, if an input wave at some relative phase 8
is maximally amplified, then an input wave in the opposite
quadrature (phase shifted by + #/2 rad) will be maximal-
ly attenuated. '

In the case of degenerate parametric amplification, the
inputs to the nonlinear device are a weak signal wave at
angular frequency @ and a strong pump wave at angular
frequency 2. Each of these real waves, representing oscil-
lating electric and magnetic fields, can be composed of
positive and negative frequency phasors. Multiplication of
the positive frequency input signal phasor 4 *¢* by the
negative frequency pump phasor Pe ~ 2! gives a contribu-
tion to the output proportional to 4 *Pe ~ ", At the same
time, multiplication of the negative frequency input signal
phasor 4e ~ by P *¢**' and by Pe ~ *** produces a contri-
bution to the output proportional to 4PP*e ~ ", In gen-
eral, the magnitude of the negative frequency output pha-
sor Be~ ™' is a linear combination of the positive and
negative frequency input signal phasors,

B=pd+vA*, (50)

where the relative phase of the 4 and 4 * contributions is
determined by the phases of & and v.

In the case of degenerate four-wave mixing, the signal
and pump input waves are both at angular frequency w. At
optical frequencies two strong, counterpropagating pump
beams are usually introduced at a slight angle with respect
to the weak signal beam. The nonlinearity involves the po-
larization Q of the medium and the driving electric field E,
for example,

Q = k,E + k,E? + higher-order terms. (51)

The cubic term can mix the positive frequency signal pha-
sor A *¢*' down to a negative frequency via the product,
A *e'Pe~“'Pe ', while the negative frequency signal
contributes to the negative frequency output phasor via
both the linear term and the product Ae ~ **'Pe — ‘“'P ¥¢'*
from the cubic term.

We are now in a position to understand, in a completely
classical way, how the phase-sensitive nature of parametric
amplification or four-wave mixing can lead to squeezing.
Consider the ensemble of oscillators represented by the
blur circle of Fig. 6(a). If, by a nonlinear process, the com-
ponent of each phasor that lies parallel to the x axis at the
instant shown is attenuated, while the component that lies
along the p axis is amplified, then we get the situation in
part (b) of the figure. On the other hand, if the component
of each phasor along the x axis is amplified, while the com-
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ponent along the p axis is attenuated, then we arrive at the
situation in part (c).

The process of squeezing is now seen to be a.classical
phenomenon, based on phase-sensitive amplification. If
there is a signal present at the input of the squeezing device,
both signal and noise (whether the noise is of thermal ori-
gin or is due to the fundamental quantum uncertainties)
are amplified in one quadrature and attenuated in the other
quadrature. The signal-noise ratio in each quadrature re-
mains the same.

VII. HOMODYNE DETECTION OF SQUEEZED
STATES

One might question the usefulness of a measurement
whose variance oscillates rapidly between a very low and a
very high value. We show next that it is possible to measure
a physical variable having a squeezed variance that is con-
stant in time.

The conversion of an oscillating quantity to a constant
quantity has a long and honorable history in physics and
engineering. The method, called homodyne detection or
phase-sensitive detection, involves multiplication of the os-
cillating signal by a “local oscillator” wave at exactly the
same frequency as the signal, followed by time averaging
or, equivalently, low-pass filtering. (In the closely related
heterodyne detection method, the signal and local oscillator
frequencies are different.) The product of the signal and
local oscillator can have a nonzero average value propor-
tional to the signal amplitude, as well as an oscillating com-
ponent at twice the signal frequency, which can be removed
by time averaging.

We begin our analysis in the classical domain, represent-
ing the sinusoidal signal, the displacement of the oscillator,
by

x() = xge @' 4 x¥e' (52)
and the local oscillator wave by
y(t) =y0e—i(wr+9) +y0ei(mr+6) . (53)

Here, we have used the subscript to emphasize that x,, x3,
yoe ~ %, and y.e® represent the rotating phasors at time
t = 0 and that all four entities are, therefore, constant com-
plex numbers. (The phase 8 of the local oscillator is shown
explicitly because it usually can be adjusted by the experi-
menter.) The product,

x(D)y(1) = Xo ¥oe” + x§ yoe =
+ xoyoe—i(2m+ ) +xgy0ei(2(ul+9) , (54)

contains constant terms and terms that oscillate at angular
frequency 2w; the latter disappear when the product is time
averaged.

In homodyne detection of a squeezed state, the local os-
cillator always has much greater amplitude than the signal,
which means that the fractional fluctuations in x, are much
larger than the fractional fluctuations in y,. As in most
treatments of homodyne detection, we will treat y, as hav-
ing no fluctuations at all and, in fact, we will omit the factor
¥, altogether.

The output of a homodyne detector is the time-averaged
product d of the signal and local oscillator where, from

(54),

d=x,"+ x¥e " (55)
Although this measured quantity has no inherent time de-

i0
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pendence, it does have a quantum-mechanical expectation
value (d ) and a variance var(d), which, in an actual mea-
surement of detector output versus time, are manifested as
an average value plus fluctuations, or noise.

To calculate (d ) and var(d), we go to the quantum do-
main by the now familiar technique of replacing the pha-
sors x, and x§ with the annihilation and creation operators
@ and @*. The resulting quantum-mechanical operator d
represents the detector output 4 in exactly the same way
that the quantum-mechanical operators X and p represent
the classical position and momentum of the oscillator or
the electric and magnetic fields of the signal mode.

Making the operator replacements indicated above, we
obtain

a=&eio+&+e—ie
=a(cos@ +isin@) +a+(cos@—isin )
=v2(Xcos@ —psinb) . (56)

This equation shows that the detector output is proportion-
al to a linear combination of the oscillator’s initial position
and momentum. Furthermore, by adjusting the local oscil-
lator phase to be 0 or 7/2, one can choose the detector
output to be proportional to the initial displacement or pro-
portional to the initial momentum. These are said to be
quadrature measurements because they involve a quarter-
cycle phase shift of the local oscillator and because they
measure the magnitudes of two variables, position and mo-
mentum, that are a quarter-cycle out of phase in time.

The variance (noise) of the detector output can be made
proportional either to the variance of the initial position or
to the variance of the initial momentum, depending on the
phase setting. And, as long as the phase remains constant,
the variance of the detector output remains constant. In-
deed, the usual experimental “proof ” of squeezing'® in-
volves looking at the noise output of a homodyne detector
and varying the local oscillator phase. If the noise level
oscillates with period 7 as the phase is varied, and if the
noise level goes below the vacuum noise level, then squeez-
ing has been demonstrated.

VIII. DISCUSSION

We have shown that squeezed states are analogous to
coherent states. Each type is defined to be an eigenfunction
of a certain operator: the annihilation operator in the case
of the coherent states, a linear mixture of the annihilation
and creation operators in the case of the squeezed states. In
each case, we developed computationally efficient recur-
sion relations for the number state coefficients in the linear
superposition that makes up the state. Then, using definite
numerical parameters, we calculated the coefficients and
produced graphs of wave packets at various times directly
from the number states, whose values at each position x
were calculated with the help of the recursion relations for
the Hermite polynomials. The oscillations in var(x) for
these wave packets were evident from the graphs, but we
also showed how to calculate the expectation values and
variances of position and momentum as functions of time
by operator methods.

We have seen that squeezed quantum-mechanical states
of an oscillator are an entirely predictable extrapolation of
the (not unusual) case of oscillating variances when num-
ber states are combined. Clearly, states with nonoscillating
variances, such as the coherent states, are special cases
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among the infinite variety of states, even though they may
be easily prepared with a laser. It is a natural, yet profound,
idea that one quadrature’s variance can be very small,
while the other quadrature’s variance is large enough to
satisfy the uncertainty principle.

We have also discussed, in a semiquantitative way, how
nonlinear interactions with a pump wave can mix the clas-
sical positive and negative frequency phasors and, by anal-
ogy, the creation and annihilation operators. And we have
seen how the process of squeezing can be understood classi-
cally, as phase-sensitive amplification. On the other hand,
we have not attempted to make a quantitative connection
between an input coherent state and an output squeezed
state in such a nonlinear interaction or to establish a pho-
ton by photon formalism. Although the calculation of
quantum-mechanical amplitudes for various final states
when individual photons are incident on a nonlinear device
is an unsolved problem, we can expect, from conservation
of energy, that the signal photons added to the output must
come from the annihilation of pump photons. For example,
in a degenerate parametric amplifier the annihilation of
one, two, three, etc., pump photons at frequency 2 would
give rise to two, four, six, etc., output signal photons at
frequency w in addition to the stimulating input signal pho-
ton.

We have also shown that with homodyne detection, in
which squeezed light is mixed with local oscillator light of
the same frequency (in practice, the two beams are added
with a beam splitter and allowed to fall on a photomulti-
plier tube cathode or a photo diode), we can “squeeze”
most of the uncertainty into the nonmeasured quadrature
for as long a time as we wish to measure the signal. This
measurement scheme is equivalent to placing ourselvesin a
rotating reference frame in phase space, in which the vari-
ance of the measured quantity is constant.

The essentially numerical methods we have presented
for examining squeezed states depend on the computer’s
ability to keep track of a large number of coefficients. This
use of the computer as a bookkeeping device for coeffi-
cients can also be applied to situations in which the system
Hamiltonian connects two (or more) modes; this is the
quantum-mechanical version of the coupled oscillator
problem, which is equivalent to treating the pump wave, as
well as the signal wave, quantum mechanically. In the cou-
pled oscillator problem, the system wave function can be
specified as a linear combination of base states |n,,n,) in
which one oscillator contains 7, quanta and the other con-
tains n, quanta. The correlations produced between oscil-
lators via interaction terms in the Hamiltonian then permit
information about one oscillator to be deduced from mea-
surements on the other oscillator, a situation sometimes
described as the Einstein-Podolsky—Rosen (EPR) para-
dOX.36'37

APPENDIX

One way to find the average (x), ( p), (x*), and { p?) for
an ensemble of oscillators represented by a coherent state is
to substitute the general expression for a coherent state
coefficient [from (37) ] into Eqgs. (30) and (31). This s, in
fact, how our computer program makes these calculations.
But when we can write the operators in terms of the anni-
hilation and creation operators and when the states them-
selves are coherent states, there is a simpler and more ele-
gant method.
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Foracoherent state |a), we have 8|a) = a|a). The Her-
mitian adjoint of this relation is (a|@* = a*(a|. At time
t = 0 the expectation values of & and @™ are found directly
from these eigenvalue equations:

(a|d|a) =a
and

{ala™|a) =a*. (Al)

Equations (30) and (31) showed quite generally that these
expectation values have a complex exponential time de-
pendence. Thereforé, when we combine these expectation
values to find the time-dependent expectation values of po-
sition and momentum, we obtain

(x) =(a|(@+a*)/V2|a) = (ae ™"+ a*e")/V2

and (A2)
(p) =(a|(@—a*)/Viila) = (ae™ " — a*e") Vi

For real eigenvalues a, these reduce to
(x) =2acost
and (A3)

(p)= —\2asint,

which are equivalent to the first two of Eqgs. (40).

To find (x*) and ( p?) for a coherent state we must
evaluate (alaa|a), (alaTa*|a), {(a|a*ala), and
(alaa™|a) [see Egs. (15) and (16)]. The bracket
{a|aa|a) is conveniently computed by operating twice on a
coherent state with the annihilation operator. Because
there are two factors of e ~“ we find
2 —2it

(a|aala) = a’e (A4)
The second bracket is the complex conjugate of (A4):

(alatat|a) = (a*)%*. (A5)
The third bracket evaluates to
(ala*dla) =a*a. (A6)

The fourth and final bracket is first converted to “normal
order” (all creation operators to the left of all annihilation
operators) by using the commutation relation [Eq. (12)],
and then reduced by the eigenvalue equations

(alga™|a) = (ala™a + 1|a)
=a*a+1. (A7)

Combining Eqgs. (A4) through (A7) according to Egs.
(15) and (16), we obtain (for real ),

(x*) = [a* (e + e %) +2a* + 1]/2
=a?(1 +cos 2t) +1/2

=2a%cos?t+ 1/2, (A8)
and
(PP =[—a*(" +e )+ 22> +1]/2
=a?(1 —cos2t) + 1/2
=2a*X sin’t+ 1/2. (A9)
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Equations (A8) and (A9) are equivalent to the last two
equations of (40) in the text.

'D. F. Walls, Nature 306, 141 (1983).

2H. P. Yuen, Phys. Rev. A 13, 2226 (1976).

*H. P. Yuen and J. H. Shapiro, Opt. Lett. 4, 334 (1979).

“G.J. Milburn, D. F. Walls, and M. D. Levenson, J. Opt. Soc. Am. B 1,
390 (1984).

*M. D. Levenson, R. M. Shelby, and 8. H . Perlmutter, Opt. Lett. 10, 514
(1985).

M. D. Levenson, R. M. Shelby, M. D. Reid, D. F. Walls, and A. Aspect,
Phys. Rev. A 32, 1550 (1985).

"R. M. Shelby, M. D. Levenson, D. F. Walis, A. Aspect, and G. J. Mil-
burn, Phys. Rev. A 33, 4008 (1986).

®B. Yurke, Phys. Rev. A 29, 408 (1984).

°H. J. Carmichael, G. J. Milburn, and D. F. Walls, J. Phys. A 17, 469
(1984).

19G. J. Milburn and D. F. Walls, Opt. Commun. 39, 401 (1981).

''"M. D. Reid, D. F. Walls, and B. J. Dalton, Phys. Rev. Lett. 55, 1288
(1985).

12G. J. Milburn, Opt. Acta 31, 671 (1984).

3G. J. Milburn, J. Phys. A 17, 737 (1984).

MR. A. Fischer, M. M. Nieto, and V. D. Sandberg, Phys. Rev. D 29, 1107
(1984).

15Phys. Today 39 (3), 17 (1986).

18R, L. Robinson, Science 230, 927 (1985).

7R. L. Robinson, Science 233, 280 (1986).

'8R. E. Slusher, L. W. Hollberg, B. Yurke, J. C. Mertz, and J. F. Valley,
Phys. Rev. Lett. 55, 2409 (1985).

R. M. Shelby, M. D. Levenson, S. H. Perlmutter, R. G. DeVoe, D. F.
Walls, Phys. Rev. Lett. 57, 691 (1986).

2C, M. Caves, Phys. Rev. D 23, 1693 (1981).

2'H. P. Yuen and J. H. Shapiro, IEEE Trans. Inf. Theory IT-24, 657
(1978).

22), H. Shapiro, H. P. Yuen, and J. A. Machado Mata, IEEE Trans. Inf.
Theory IT-25, 179 (1979).

BFor example, W. H. Louisell, Quantum Statistical Properties of Radi-
ation (Wiley, New York, 1973), Sec. 4.3.

24R. J. Glauber, Phys. Rev. 131, 2766 (1963).

ZFor example, L. 1. Schiff, Quantum Mechanics (McGraw-Hill, New
York, 1949), Chap. IV.

26p, A. M. Dirac, Quantum Mechanics (Oxford U.P., London, 1947), 3rd

ed., Chap. VL.
?"In Figs. 1-4, the numerical values of number states |0) through |80)
were generated from Eqgs. (2) and (3) at 141 valuesof x fromx = — 7.0

tox = 7.0 at intervals of 0.1. To obtain the wavefunction at each xand 7,
the value of each number state at that position was multiplied by the
appropriate numerical coefficient ¢, (0)e ~ 7 of that number state, and
the series summed. All calculations were performed on a personal com-
puter containing an Intel 8087 math coprocessor with a program written
in the PASCAL language.

28D, M. Pepper, Opt. Eng. 21, 156 (1982).

H. P. Yuen and V. W. S. Chan, Opt. Lett. 8, 177 (1983).

30B, L. Schumaker, Opt. Lett. 9, 189 (1984).

313, H. Shapiro, IEEE J. Quantum Electron. QE-21, 237 (1985).

32B, Yurke, Phys. Rev. A 32, 311 (1985).

D. Stoler, Phys. Rev. D 1, 3217 (1970); 4, 1925 (1971).

3D. Stoler, Phys. Rev. Lett. 33, 1397 (1974).

35H. Paul, Rev. Mod. Phys. 54, 1061 (1982).

3A. Einstein, D. Podolsky, and N. Rosen, Phys. Rev. 47, 777 (1935).

¥IN. D. Mermin, Phys. Today 38 (4), 38 (1985).

R. W. Henry and S. C. Glotzer 328



