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Overview
I Part 1: Introduction and simple cases

I Basic definitions
I Review of the uncertainty relation
I Intelligence
I Applications

I Part 2: Angular momentum intelligent states
I Introduction and basic properties
I A mathematical interlude
I The method of Lavoie
I The method of Rashid

I Part 3: Squeezing in angular momentum intelligent states.
I x and p squeezing
I What is spin squeezing
I Some results and examples

I Part 4: SU(1, 1) intelligent states
I An associated Schrödinger problem
I SU(1, 1) coupling
I Some results

I Summary
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su(2): the angular momentum algebra
I The angular momentum algebra contains three elements:

L̂x , L̂y and L̂z .
I They have non–zero commutation relations[

L̂x , L̂y

]
= i L̂z ,

[
L̂y , L̂z

]
= i L̂x

[
L̂z , L̂x

]
= i L̂y (1)

I It is convenient to introduce (non-hermitian) raising and
lowering operators:

L̂+ = L̂x + i L̂y , L̂− = L̂x − i L̂y (2)

I We now have the non–zero commutation relations[
L̂z , L̂±

]
= ±L̂± ,

[
L̂+, L̂−

]
= 2L̂0 . (3)

I We have the actions

L̂z |`,m〉 = m|`,m〉 ,
L̂±|`,m〉 =

√
(`∓m)(`±m + 1)|`,m ± 1〉 (4)
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Physical realization
I Let a1, a2, a

†
1, a
†
2 denote the usual creation and destruction

operators.

I We have

a†1a2|n1, n2〉 =
√

(n1 + 1)n2|n1 + 1, n2 − 1〉 ,
a†2a1|n1, n2〉 =

√
n1(n2 + 1)|n1 − 1, n2 + 1〉 ,

1
2

(
a†1a1 − a†2a2

)
|n1, n2〉 = 1

2 (n1 − n2)|n1, n2〉 (5)

I Now look at[
1
2

(
a†1a1 − a†2a2

)
, a†1a2

]
= a†1a2,[

1
2

(
a†1a1 − a†2a2

)
, a†2a1

]
= −a†2a1,[

a†1a2, a
†
2a1

]
= 2× 1

2

(
a†1a1 − a†2a2

)
(6)

I Those are the commutation relations of L̂±, L̂z .
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su(2) in quantum optics

Thus:

I We have the correspondence between operators

L̂z → 1
2

(
a†1a1 − a†2a2

)
, L̂+ = a†1a2 , L̂− = a†2a1 (7)

I We have the correspondence between angular momentum and
number labels:

j = 1
2 (n1+n2) ,m = 1

2 (n1−n2), n1 = j +m , n2 = j−m (8)

I These correspondences is central in quantum optics:
I If the indices 1 and 2 denote arms of an interferometer, we

can use su(2) to describe passive lossless interferometers.
I if the indices 1 and 2 denote horizontal or vertical

polarization, we can describe polarization of light.
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Review and setup for intelligent states
I Intelligent states of x̂ and p̂ satisfy ∆x∆p = 1

2 .
I They are solutions to

(x̂ − iαp̂) |χ〉 = λ|χ〉 (9)

I Set α = −1: x̂ + i p̂ = a. The solution to

a|χ〉 = λ|χ〉 (10)

is the harmonic oscillator coherent state of quantum optics.
I Intelligent states

∣∣ψ` (α)
〉

are states that satisfy (~ = 1)

∆Lx∆Ly = 1
2 |〈L̂z〉|. (11)

I They are solution to

(L̂x − iαL̂y )|ψ`(α)〉 = λ|ψ`(α)〉 (12)

I Set α = ∓1: L̂x ± i L̂y = L̂±. The solutions to

L±|ψ`〉 = λ|ψ`〉 (13)

are the angular momentum kets |`,±`〉. These imply λ = 0.
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Basic properties of angular momentum intelligent
states

I Since L̂x and L̂y act in a finite dimensional space and are
hermitian:

I The minimum in the product ∆Lx∆Ly is 0,
I This minimum is reached by using an eigenstate of either L̂x

or L̂y .
I intelligent states are not minimum uncertainty states.

I Intelligent states
∣∣ψ` (α)

〉
satisfy (as always) the eigenvalue

equation
(L̂x − iαL̂y )|ψ`(α)〉 = λ |ψ`(α)〉, (14)

for the non–hermitian operators L̂x − iαL̂y ,

I −∞ ≤ α ≤ ∞ is a real parameter.

I The eigenvalue λ is related to the average value of L̂x and L̂y

and to the parameter α via:

λ = 〈 Lx〉 − iα〈 Ly 〉 . (15)
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BCH and angular momentum operators
I Recall Baker-Campbell-Hausdorff:

eÂ B̂ e−Â = B̂ + [Â, B̂] + 1
2 [Â, [Â, B̂]] + . . . (16)

I Apply this to eiβL̂y L̂x e−iβL̂y :[
iβL̂y , L̂x

]
= iβ(−i)L̂z = βLz[

iβL̂y ,
[
iβL̂y , L̂x

]]
=
[
iβL̂y , βLz

]
= iβ2(i)L̂x = −β2L̂x

I Continue but we can already guess the result:

eiβL̂y L̂x e−iβL̂y = L̂x

(
1− 1

2β
2 + . . .

)
+ L̂z (β + . . .)

= L̂x cosβ + L̂z sinβ (17)

I Similarly

eiβL̂y L̂z e−iβL̂y = L̂z cosβ − L̂x sinβ , (18)

eiβL̂y L̂y e−iβL̂y = L̂y (19)
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Some angular momentum coherent states

Start with the intelligent state |`, `〉.
I Write

|β〉 = e−iβL̂y |`, `〉 . (20)

I |β〉 is a special case of the more general angular momentum
coherent states

|γ, β〉 ≡ e−iγL̂z e−iβL̂y |`, `〉 . (21)

I Note that

〈β|L̂z |β〉 = 〈`, `|eiβL̂y L̂ze−iβL̂y |`, `〉 ,
= cosβ〈`, `|L̂z |`, `〉 − sinβ〈`, `|L̂x |`, `〉 ,
= ` cosβ . (22)
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Some angular momentum coherent states

Also: 〈β|L̂y |β〉 = 〈`, `|eiβL̂y L̂ye−iβL̂y |`, `〉 ,
= 〈`, `|L̂y |`, `〉 = 0 , (23)

〈β|(L̂y )2|β〉 = 〈`, `|(L̂y )2|`, `〉 = 1
2` , (24)

(∆Ly )2 = 1
2` (25)

while 〈β|L̂x |β〉 = 〈`, `|eiβL̂y L̂xe−iβL̂y |`, `〉 ,
= cosβ〈`, `|L̂x |`, `〉+ sinβ〈`, `|L̂z |`, `〉 ,
= ` sinβ (26)

and 〈β|(L̂x)2|β〉 = cos2 β〈`, `|(L̂x)2|`, `〉+ sin2 β〈`|(L̂z)2|`〉
+ sinβ cosβ〈`, `|(L̂x L̂z + L̂z L̂x)|`, `〉 ,

= 1
2` cos2 β + `2 sin2 β , (27)

Hence (∆Lx)2 = 1
2` cos2 β .
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Some angular momentum coherent states
I Collecting the results:

(∆Ly )2(∆Lx)2 = 1
4`

2 cosβ = 1
4 |〈L̂z〉|2 . (28)

I Conclusion: the coherent states |β〉 = e−iβL̂y |`, `〉 are
intelligent.

I Alternatively:(
L̂x − iαL̂y

)
e−iβL̂y |`, `〉 = λe−iβL̂y |`, `〉 ,

= e−iβL̂y eiβL̂y

(
L̂x − iαL̂y

)
e−iβL̂y |`, `〉 (29)

I which implies

e−iβL̂y

(
L̂z sinβ + [L̂x cosβ − iαL̂y ]

)
|`, `〉 (30)

I Choose α = − cosβ so L̂x cosβ − iαL̂y = L̂+. The eigenvalue
is λ = ` sinβ.
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Coupling property

Because the eigenvalue equation

(L̂x − iαL̂y )|ψ`(α)〉 = λ |ψ`(α)〉, (31)

is linear in L̂x − iαL̂y , we have the following property:

I Let |χ(α)〉A and |φ(α)〉B be intelligent:

(L̂x − iαL̂y )|χ(α)〉A = λA|χ(α)〉A (32)

(L̂x − iαL̂y )|φ(α)〉B = νB |φ(α)〉B , (33)

I Then,

|ψ(α)〉 = |χ (α)〉A ⊗ |φ (α)〉B ≡ |χ (α)〉A |φ (α)〉B (34)

is intelligent.
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Proof of compositeness

Define the total angular momentum projections as

L̂x = L̂x,A + L̂x,B , L̂y = L̂y ,A + L̂y ,B (35)

where L̂x,A acts only on |χ(α)〉A and not on |φ(α)〉B , etc.

(L̂x − iαL̂y )|ψ(α)〉

=
[
(L̂x,A − iαL̂y ,A)|χ(α)〉A

]
|φ(α)〉B

+|χ(α)〉A
[
(L̂x,B − iαL̂y ,B)|φ(α)〉B

]
(36)

= (λA + νB)|χ(α)〉A|φ(α)〉B . (37)

In other words: the direct product of two intelligent states is also
intelligent, provided that one thinks of the resulting state as a
composite state constructed from two separate systems.
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Intelligent states as coupled coherent states

I We can use the coupling property on coherent states (they
are intelligent) to construct other intelligent (non-coherent)
states.

I Example: (
e−iβL̂y,A |`A, `A〉

)(
e−iβL̂y,B |`B , `B〉

)
(38)

is intelligent but...

I this is nothing new since(
e−iβL̂y,A |`A, `A〉

)(
e−iβL̂y,B |`B , `B〉

)
=
(
e−iβ(L̂y,A+L̂y,B )

)
|`A, `A〉|`B , `B〉 , (39)

= e−iβL̂y |`, `〉 , (40)

with ` = `A + `B .
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Intelligent states as coupled coherent states

I Consider instead

|ψ`A,`B (β)〉 =
(
e−iβL̂y,A |`A, `A〉

)(
e+iβL̂y,B |`B , `B〉

)
. (41)

I Since this is a product of intelligent states, it is also
intelligent.

I Write

|ψ`A,`B (β)〉 =

[∑
mA

|`A,mA〉〈`A,mA|e−iβL̂y,A |`A, `A〉

]

×

[∑
mB

|`B ,mB〉〈`B ,mB |eiβL̂y,A |`B , `B〉

]
(42)

and couple the angular momentum states using

1l =
∑
m

|`,m〉〈`,m| (43)



Angular momentum
intelligent states

Introduction and basic
properties

Some angular
momentum coherent
states

BCH and angular
momentum operators

Some angular
momentum coherent
states

Method of Lavoie

Coupling property

Proof of
compositeness

Intelligent states as
coupled coherent
states

Method of Rashid

Diagonalizing using
non-unitary
transformations

Normalizing
|`,m; ν)

Closed form
expression

Summary

Intelligent states as coupled coherent states

I Using

〈`,m|e−iβL̂y |`, `〉 = d`m,`(β) , (44)

this yields the unnormalized closed form expression:

|ψ``A,`B (β)〉 =
∑
m

|`,m〉C `,m
`A,mA;`B ,mB

×d`AmA,`A
(β) d`BmB ,`B

(−β) (45)

where C `,m
`A,mA;`B ,mB

is an angular momentum coupling
coefficient.

I The resulting states |ψ``A,`B (β)〉 must be normalized “by
hand”,
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Intelligent states as coupled coherent states

Observations:

I The eigenvalue problem(
L̂x − iαL̂y

)
|ψ〉 = λ|ψ〉 (46)

has 2`+ 1 solution for angular momentum `.
I Choosing (`A, `B) = (`, 0), (`− 1

2
, 1

2
), (`− 1, 1) etc yields the

2`+ 1 possible solutions.
I One can show λ =

√
1− |α|2(`A − `B).

I Assuming |α| ≤ 1,
I λ is real and λ`A,`B = (`A − `B) sinβ,
I 〈L̂x〉 = 1

2
(`B − `A) sinβ

I 〈L̂y 〉 = 0

I For |α| > 1, one must project from

|ψ`A,`B (β)〉 =
(
e−iβL̂x,A |`A, `A〉

)(
eiβL̂x,B |`B , `B〉

)
(47)
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A possible implementation

I One can avoid the use of coupling technology by taking
advantage of the bosonic nature of photons.

I It has been shown that one can write

|ψ``A,`B (β)〉

∼
[
a†H cos(

β

2
) + a†V sin(

β

2
)

]2`A

×
[
a†H cos(

β

2
)− a†V sin(

β

2
)

]2`B

|0〉 (48)

I Unfortunately, this is apparently very difficult to do in the lab.
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A non-unitary transformation
Recall that intelligent states satisfy(

L̂x − iαL̂y

)
|ψ`〉 = λ|ψ`〉 (49)

I Consider
|`,m; ν) ≡ eiπL̂y/2eνL̂x |`,m〉 (50)

I Note that, since L̂x is hermitian, eνL̂x is not unitary. Then(
L̂x − iαL̂y

)
eiπL̂y/2eνL̂x |`,m〉

= eiπL̂y/2eνL̂x

×
[
e−νL̂x e−iπL̂y/2

(
L̂x − iαL̂y

)
eiπL̂y/2eνL̂x

]
|`,m〉(51)

I Using BCH:[
e−νL̂x e−iπL̂y/2

(
L̂x − iαL̂y

)
eiπL̂y/2eνL̂x

]
= (cosh ν + α sinh ν) L̂z + i (sinh ν + α cosh ν) L̂y
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A non-unitary transformation

I Choose ν so that

sinh ν + α cosh ν = 0⇒ tanh ν = −α . (52)

I Then (
L̂x − iαL̂y

) [
eiπL̂y/2eνL̂x |`,m〉

]
= m

√
1− α2

[
eiπL̂y/2eνL̂x |`,m〉

]
. (53)

Compare with:(
L̂x − iαL̂y

)
|ψ``A,`B (β)〉 = (`B − `A) sinβ |ψ``A,`B (β)〉 (54)

I Recall cosβ = −α so sinβ =
√

1− α2.

I Thus m = `B − `A
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Normalizing |`,m; ν)
As the transformation is not unitary, the states |`,m; ν) are not
normalized.

I Start with

〈`,m|eνL̂x e−iπL̂y/2eiπL̂y/2eνL̂x |`,m〉 = 〈`,m|e2νL̂x |`,m〉 , (55)

I Next, observe that

|`,m〉 = e−imπ/2eiπL̂z/2|`,m〉 (56)

so

〈`,m|e2νL̂x |`,m〉 = 〈`,m|e−iπL̂z/2e2νL̂x eiπL̂z/2|`,m〉 ,(57)

= 〈`,m|e2νL̂y |`,m〉 , (58)

= d`m,m(−2iν) (59)

where d`m,m(−2iν) is the Wigner little-d functions with
imaginary argument.

I Thus

|`,m; ν〉 =
1√

|d`m,m(−2iν)|
|`,m; ν) . (60)
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Closed form expression

Putting it all together:

|`,m; ν〉 =
1√

|d`mm(−2iν)|
eiπL̂y/2 eνL̂x |`,m〉 , (61)

which can be expanded as

|`,m; ν〉

=
1√

|d`mm(2iν)|
eiπL̂y/2 eνL̂x e−iπL̂y/2

[
eiπL̂y/2|`,m〉

]
=

1√
|d`mm(−2iν)|

e−νL̂z

[∑
m′

|`,m′〉d`m′m(−π/2)

]
,(62)

and finally gives the closed form expression

|`,m; ν〉 =
∑
m′

d`m′m(−π/2) e−νm′√
|d`mm(−2iν)|

|`,m′〉 . (63)
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Summary

I Angular momentum coherent states are intelligent.

I Not all intelligent states are coherent.

I Two methods of construction:
I Based on coupling and unitary transformations,
I Based on non-unitary transformations but no coupling.

Additional References:

I Historical intelligent states:
I C. Aragone et al., J. Phys. A: Math., Nucl. Gen. 7,

L149-L151 (1974),
I C. Aragone et al., J. Math. Phys. 17 1963-1971

I Coupling method:
I B. R. Lavoie and H. de Guise, J. Phys. A40 (2007)

2825-2837
I M. M. Milks and H. de Guise, J.Opt.B– Quant. Semi-Class.

7 (2005) S622-S627

I Diagonalization using non-unitary transformations:
I M. A. Rashid, J.Math. Phys. 19 (1978) 1391
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