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Basic definition

Given two incompatible observables Aand B, [/2\, B] =% 0, there
exists an restriction on the possibility of preparing a state in which
these two observables simultaneously take values. This restriction
takes the form of an inequality called an uncertainty relation:

AABB > 1[([A. B]).

It is natural to ask if there are states onrAwhich the lower bound is
reached, i.e. for which AAAB = 1(([A, B]).

Definition:
An intelligent state of A and B is a normalized state [¢) for which

AALB = 3[([A, B))| (1)
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AA
» Take |1)) any normalized ket.
> Write (1| AJ¢) = (A).

» For any observable A, define

AA=A— (A), (2)
» Then )
(BAP) = Wl (A- (A) " [0) 3)
» Expand:
<m%%::wwkemmﬁmﬂw
(WIA|9) = 2(|A[p)(A) + (A2 (4)
» Collect:

>

>
S

I

(PIA%]) — (A)?,
(A%) — (A)?
= (AAZ>0. (5)
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AAAB > L|([A B))

We now show the uncertainty relation:

1 o~ 4
(84 (2B > 7 |(A B)P. (6)
The uncertainty
Proof: reatn
> Let
[wa) = AAl) = Alw) - [¥)(¢IAW)
[Ye) = AB[Y) = Bly) — [¢)(®|Bly) (7)
where [1) is any normalized state (although |1)4) may not be
normalized).
» By Schwarz inequality (a.k.a the triangle inequality),

(alva)(Vele) > [(Yalvs)? (8)

» We note, for future reference, that

(Yalpa) (slvs) = [(Wals) P = [¥a) = nlys), (9)

i.e. strict equality implies |t4) is a scalar multiple of |¢g).




AANB > |([A B])

From
(alva) (Ve|ve) > [(Yalts)? (10)

assume that A and B are hermitian so

(AA)Y =AA, (AB) = AB (11)

» Then
(alia) = (0] (BA)' AR = (AAP).  (12)

and similarly for (¥g|9s).
» Expand

(Valvs) = (VIAAABIY) (13)
= B




AAANB > 3[([A B]) e
> Look at 1 (y[(AAAB — ABAA)|4) and write

(W|[AA, AB][y)
(W[[A, Bllv).  (15)

L()|(AAAB — ABAA) ) = 1
1
2

The uncertainty

relation

[A,B]l = (AB- BA)' = (AB)! — (BA),
— BTAT — ATBT
= BA-AB=-[AB], (16)
» Hence,
(W[[AA ABlw) = (W[[A, Blj)) =ic-, c_eR (17)

» AAAB + ABAA is hermitian. Thus we write
(Y|AAAB + ABAAW) = icy cy € R. (18)




11/TA E N migons satss
AADEB = 3[{[A B]) e
Hence The uncertainty
relation :
(Walve) = 3lic- +cy),
[(Yalve))® = (2 +cl)=3
> (A B (19)
Putting it all together, we get
(AA)* (AB) > [(balvs)l® > F (A B),  (20)

which proves the claim.
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AAAB = L|([A B))| S

To replace
AAAB > (A Bl)| — AAAB= (A B]) (21)
we must satisfy two conditions:
> [Ya) = plvp) ie Ieligence
AA[Y) = pABlY) (22)

> o = (Y] (AAAB + ABAA) ) = 0.
» Using Eq.(22) and its conjugate:

cr = 0= p" (YI(ABY’[Y) + n(w|(AB)ly)  (23)

» But (¢|(AB)?|¢) is real so u* = —p, or p = icr, with @ € R.

» Hence we get the condition on |1)):

(2\ - iaé) W) =AY, A= (A —ia(B).  (24)




AANAB = L[([A B))|

N

Moreover:
(] (82)" ) = PGl (8B) [v) = 0| (8B) ) (25)

Thus,
(AA)? = o? (AB)? (26)
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» Rearrange
0 = (Y|AXAP|Y) + (V[APAX|Y) (27)
using AXAp = ApAX + i1 to get:
2| APARIY) = i (28)
200 DRAPIY) = +i. (20)

> Use AX|Y) = iaAp|t) to get

2iafy] (BP)° [) = —i = (Ap)" = 5~ (30)
and oi
SBR[ =i = (A= =2 (3)

» Thus « is further constrained to v < 0, with

a=-Ax/Ap. (32)




% and p

> Recall from basic quantum mechanics (k= 1):

(x[X|¢) = xib(x) ,

» Thus, we get

() = i~ i)

(33)

(34)
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x>

and p

Notes:

> (x), (p) and « are parameters; thus we rightly write

Y(x) = ¥(x; (x), (p), ) (38)

» Since o < 0, ¥(x; (x), (p), @) is normalizable over the real
line.
» For a = —1, we have Ax = Ap (in suitable units) and

¥(x; (x),(p),—1) is just a displaced harmonic oscillator
ground state.
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Self-adjoint vs hermitian SIS

There is a technical difference between self-adjoint and hermitian
operators. The difference becomes important when looking at the
(infinite—dimensional) space of functions. We illustrate as follows.

» Suppose an operator A acts on a subset of “legal” kets, which
are contained in some space §).

> Let |¢),|() two vectors in §) so that

(¢|Av) = (([) (39)

for any “legal” ket |¢).
» Then we write
Allg) =1¢) (40)
and A is the adjoint of A.

» At is well defined on all the vectors |¢) for which Af|¢) = |¢)
is valid.

» An operator is self-adjoint if At = A In particular, this
implies the set of “legal” kets for AT coincides with the set of
“legal” kets for A.
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¢ is not self-adjoint relgen e

» Consider the pair:

pro, Loeio (41)

> ©f(¢) is no longer periodic, i.e. is no longer a “legal”
function.
» Thus, ¢ cannot be self-adjoint.
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» Introduce the operator €/ with property

[Zz,ei‘p] =el? (43)
» Consider the hermitian combinations
1, . . 1, . .
sinp = o (e —e™'?), cosp= 5 (e +e7'%)  (44)
1
» We have
[I,,sing] = —icosp, [L,cosp]=ising (45)
» Introduce:
Al =1, - (L), Asinp=sing — (siny) (46)
> Use [AZZ,Asin ©] and repeat the procedure for X and p.



Intelligent states of [, and sin 0

» We are looking for states with the property that

AL, (Asing) = [(cos p)|

v

A state |¢)) for which this holds must satisfy

(L = (L) [ = ia(sinee — (sin ) o)

Using L, — —id/d¢p, Eq.(48) becomes

v

(id‘ip _ <Lz>) P(p) = —ia(sind — (sin6)) Y(p)

v

As before, we have the restriction oo < 0.

v

The solution is

Y(p) =

ei((LZ)cpfia cos p—iap(sin p)

1
VN
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Intelligent states of

Lz and sin ¢
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Intelligent states of L, and siny e
» The condition (¢ + 2m) = 1)(¢) implies

(L) —i{sinp)=m, meZ, (51)
Thus
7/)(@) _ iei(mtp—iacosgp) (52)
VN

» The normalization integral yields

27
1 = 7/ 2acos<p (53)

Intelligent states of

Lz and sin ¢

N = 27h(2a) (54)
with /, a modified Bessel function.
> Similarly,
1 27
(cosp) = N/ dpe®* % cos g, (55)
0
I1(20é)

1
2 on h(2a) =
y 27 h(2a) (2

~—
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> Intelligent states are states with “saturate” the uncertainty

relation: o
AAAB = 3[([A, B])] (57)

> Intelligent states satisfy the eigenvalue equation

(A~ iaB) v} = Alu) (58) ‘
with
> A= (A) — ia(B)
» a €R,

> o = (AA)/(AB)?
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