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» Part 1: Introduction and simple cases
> Basic definitions
> Review of the uncertainty relation
> Intelligence
> Applications

v

Part 2: Angular momentum intelligent states
» Introduction and basic properties
» A mathematical interlude
» The method of Lavoie
» The method of Rashid

v

Part 3: Squeezing in angular momentum intelligent states.
> x and p squeezing
> What is spin squeezing
> Some results and examples

v

Part 4: SU(1,1) intelligent states
» An associated Schrédinger problem
» SU(1,1) coupling
> Some results

» Summary
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x and p squeezing: gravitational wave detection e

Introduction:
squeezing and spin
squeezing

» The current gravitational wave detectors are based on
squeezing of quantized EM fields.

» Quantization of EM field results in harmonic oscillator—like
Hamiltonian,

> Squeezing of EM field is same as harmonic oscillator
squeezing in x and p.




Time evolution of Ax and Ap

» The harmonic oscillator squeezed states are not eigenstates of
the Hamiltonian.
» Ax and Ap depend on time.
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Figure: Ax and Ap as a function of time. From: Richard W. Henry and
Sharon C. Glotzer, Am. J. Phys. 56 (1988) 318
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LETTERS

Squeezing and over-squeezing of triphotons

L K. Shalm’, R. B. A, Adamson ' & A. M. Steinberg '

Quantum mechanics places a fundamental limit on the accuracy of
. In most circt the uncer-
tainty is distributed equally between pairs of complementary pro-
perties; this leads to the ‘standard quantum limit’ for measurement
resolution. Using a technique known as ‘squeezing’, it is possible to
reduce the uncertainty of one desired property below the standard
quantum limit at the expense ofi ncreasing that of the complement-
ary one. Squeezing s already being used to enhance the sensitivity of
gravity-wave detectors and may play a critical role in other high
precision applications, such as atomic clocks? and optical commu-
nications’. Spin squeezing (the squeezing of angular momentum
variables) is a powerful tool, particularly in the context of quantum
light-matter interfaces*”. Although impressive gains in squeezing
have been made, optical spin-squeezed systems are still many orders
of magnitude away from the maximum possible squeezing, known

The standard way to characterize and represent the polarization of
classical light is through the use of a Stokes vector. The vector's

as the Heisenberg uncertainty limit. Here we how an
optical system can be squeezed essentially all the way to this fun-
damental bound. We construct spin-sqt d states by i

are the Stokes parametefi, S, and S, that describe
the degree ofl inear, diagonal and circular polarization respectively,
the beam s the St t

three indistinguishable photons in an optical fibre and manipu-
lating their polarization (spin), resulting in the formation of a
squeezed composite particle known as a ‘triphoton’. The symmetry
properties of polarization imply that the measured triphoton states
can be most naturally represented by quasi-probability distribu-
tions on the surface of a sphere. In this work we show that the
spherical topology of polarization imposes a limit on how much
squeezing can occur, leading to the quasi-probability distributions
wrapping around the sphere—a phenomenon we term ‘over-
squeezing’. Our of spin-sq g in the f

regime could lead to new quantum resources for enhanced mea-
surement, lithography and information processing that can be pre-
cisely engineered photon-by-photon.

S 51,5, ands; form a Cartesian coordinate system, and for polarized
lightS;*1 5,21 5525 S,2 Such a Stokes vector terminates at a point
on the surface of what is known as the Poincasphere. For quantum
polarization states, a Poincaiesphere can be constructed where the
Stokes parameters are replaced by the Stokes operators

S~ alyanz abay~ Muz My~ N,
S~ afjanl ajay~ tul ty,
aip
S0~ ayavz ayay~ ol M,
S~ ifajan{ ajav)~ Ml M,

whereN is the total photon number and,', a; andr are the creation,
annihilation and photon number operators for polarization modg
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Squeezing: an operational definition intligan sates

Definition

How to define squeezing.
» Given:
» Two observables A and B with [/AA, B] #0,
A reference state |1))
Compute (AA),of
Use this value as reference value, or “standard quantum
limit”.

ref

vvyy

> Given an arbitrary state |¢):
» Compute (AA),.
> If (AA), < (AA)ef. |#) is squeezed.
» The concept is most useful when |1) f is experimentally or
theoretically interesting.
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Squeezing in harmonic oscillator states e

Example: squeezing x

v

Take [1)),ef = |0), the harmonic oscillator ground state.

v

(Ax)sg1 = (Ap)sg, = & (in suitable units).

v

Alternatively: (Ax)zg, = 3|([%. B])]| (in suitable units)

> Squeezing occurs when (Ax)? < SI{[%, BD]I-
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Squeezing in harmonic oscillator states etisent states
» Consider o atab  an
‘X> — e’X(a a 7aa)|0> (1) Example: squeezing x
» Using BCH, we get:
/(6131 3) g (ix(315-33) _ oxg 2
» Thus
(XI%x) = eX(0[%10) =0, (x|*[x) = Je>.  (3)
» Hence )
(Ax)2 = Le2X < L[([%,B])] (4)

for any x < 0.




lllustrating HO squeezing with Wigner functions

> lllustrating squeezing is best done using functions of x and p.
» Wigner function

_L/
2nh

o0

d€e™PEp* (x—3E)i(x+5€) (5)
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[¥) = W(x, p)
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Geometric properties

A simple translation of the state should not change its squeezing
properties.
» Introduce the displacement operator

D(a) — e—i(a*§+aéf) , a=q, + Ia, (= C (6)

» The displacement shifts X and p
D(a)%D'(a) =%+ a,, D(a)pD(a)=p+a; (7)
but does not affect Ax or Ap.

Angular momentum
intelligent states

Example: squeezing x
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Geomet I’IC propertles intelligent states

Example: squeezing x

Conclusion:
» |0) or D(a)|0) are equally good reference states.
Define |a) = D(«)|0). Then:
> (Ax); = (Bx)§ =3

5-
» |a) = D(«)|0) is nothing but the usual harmonic oscillator
coherent state.
For the coherent state |a):
> (8% = 1.(8pR = &
> (Ax)(Ap) = 3
» Thus |a) is intelligent




Squeezing in angular momentum states

Definition:
> Select |¢,£) as reference state.

» Introduce the “displacements on the sphere” operator
R(a. 0,7) = o ielr e 10h o
and a set of equivalent reference states:

R(a, B,7)[6,6) ~ e ek emiBlrp g
I, B) .

> |g0,ﬁ> is an angular momentum coherent state.

» |0, 3) are the intelligent states of Lecture 2.

Angular momentum
intelligent states

Definition
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lllustrating the coherent state e

To illustrate the effect of the rotation, use SU(2) Wigner function:

» Start with the Wigner kernel:

20 M
Y 47(- * 'l
w(0,¢) = 2£+1§ S Vi) Ty (10)  [EEE
L=0 —M

» Here,

2L +1
2[_,’_1 Z ZmL/\/Iw m><£’m| (11)

are tensor operators.

» The Wigner function is just the trace of the Wigner kernel
over the state:

W 4, (8:0,¢) = Tr (Wbg, 4, (3)) (¥, 4, (B)]) (12)
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lllustrating the coherent state

does not induce any squeezing of

”

A “displacement on the sphere

the state.
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Defining squeezing on the sphere e
Naive definition:

> Choose |(,{) as reference state.

» Then

Defining squeezing on
the sphere

> Squeezing occurs when (AL, ) = %|<Zz>| .
Difficulties:
» Choose an equivalent reference state like |3) = e~ |¢, )

» This state is just a rotated version of |¢, ¢) but...

> (AL)* < L.
Contrasts:
» With X, p, a translation in the plane X — X + a; with the
constant «; not affecting Ax.
» With Zx, a translation on the sphere ZX — COS BZX — sin 6Zy,
not a constant.




Angular momentum

Defining squeezing on the sphere el st

Defining squeezing on
the sphere

> Define 2’ as the direction of ((L,), (L), (L.))

L, =ePbv],e Py is along 2.

v

I, = eifLy er*fﬁ@ is along X'.
5 PO
(ALX')SQL = %|<[LX'7 Ly/]>|-

This makes (AL)? < (ALX/)_%QL independent of rotations on
the sphere.

v

v

v
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Defining squeezing on the sphere

Issues with the use of Wigner functions:

Defining squeezing on

the sphere

A,
7/
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Figure: Left: squeezed state. Right: not squeezed
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Squeezing plots e s
» Select a (normalized) angular momentum intelligent state

W’é,eg Z "%A zB B¢, m) (14)

» Compute (AL, )? and %|<Zz/>|
> Using €A = 9/2765 = 5/27£ = 7’ we obtain: Squeezing plots

25
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Squeezing plots e s

For EA :9/2,53 = 5/2,€= 7

4 [ Squeezing plots

ir \

0.25 05  0.75 1 1.25 15

» There is some squeezing in |wg/2 5/2(ﬂ)> for the range
0< B <1.43.
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Tren dS intelligent states

For angular momentum intelligent states |1Z)fA (@)

> For /g =0, we have £ = {5. The state [¢)f o(c)) is a coherent
state and by definition never squeezed.

» For {g # 0, there is always some range of 3 for which there is
squeezing, and a range for which there is no squeezing.

> The range of (3 for which there is squeezing increases with
increasing g and decreasing {a = ¢ — {g until {g = {a or
lg=1la— 3.

> With {g = {4, squeezing occurs for every value of 3. The
state |’l/)f/2’[2(,6)> is “anticoherent”.

> When ¢g > {4, the results are those of the ¢4 > g case
provided £g — £La, £a — U5.

Trends
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The angular momentum coherent states e

Main features:

v

By definition, coherent states are never squeezed.

v

Rotating a coherent state will not deform the Wigner
function.

Recall

v

|ﬂ> — e—iﬁ[y |€’ £> (15) Coherent state

v

With 6 =0, we get a “North Pole” state.
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(=9,8=n/9
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Coherent: £ =9, 8 = 21/9

Coherent state
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Coherent: £ =9, 8 = 51/9

Coherent state
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Intelligent state with {4 =7,(p =2 el st

Main features:

> [¢9,(c)) is obtained from

319, M) (9, M| [e—"/ﬁyw, 7)} [e"ﬁiy 2, 2>] (16)
M

» For 0 =0, we get a “North Pole” state,
» Squeezing occurs for 0 < 3 < 1.43

13 Intelligent state with
bp=T,Lg =2

L L L
0.0 0.5 10 ]
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Inte”igent: EA = 7, EB = 2’ ﬁ = 47‘(‘/9 intelligent states

Intelligent state with
bp=T,Lg =2
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Intelligent: {4 =7,0g =2,0=>57r/9

Intelligent state with
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Intelligent state with {4 =5,(p = 4

Main features:

> |48 4(c)) is obtained from

319, M) (9, M| [e—"/ﬁy|5, 5>} [e"ﬁiy 4, 4>]
M

» For 0 =0, we get a “North Pole” state,
» Squeezing occurs for 0 < 3 < 1.52

0.0 0.5 10 ]
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Intelligent: {4 =5,0g =4,0=27/9

Angular momentum
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Intelligent: {4 =5,0g =4,5=31/9
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Intelligent: {4 = 5,0 =4,3 =57/9 elgen s

Intelligent state with
€p=51Lg =4
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Intelligent state with {4 =9/2,/g =9/2 inteligent staes
Main features:
> [1)3/2.9/2()) is obtained from

19, My9, M| [ 7H13,$)] o]
M

NI©
NI©

| a8

)

» For 3 =0, we get a “North Pole” state,
» Squeezing occurs for every (3

Intelligent state with

Ly =9/2, tg =

972

0.0 0.5 10 1.5

» The state is “anti—coherent”.
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Intelligent: gA = 9/2, EB = 9/2’ ﬁ e O intelligent states

Intelligent state with
£y =9/2,0g =
97/
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Intelligent: {4 =9/2,0g=9/2,3=m/9
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Intelligent: {4 =9/2,0g =9/2,3 =2m/9 et e
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Intelligent: {4 =9/2,0g =9/2,5=57r/9 eligen sats
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A phySicaI mOdel? intelligent states

For a coherent state like |€a, £a):

N
i

i
AT
T

A physical model?

> In the plane perpendicular to (L, a), the components L,/ 4
and L, 4 are randomly distributed.

~

> (L) = (L) =0.
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A phySicaI mOdel? intelligent states

Put this together with a rotated coherent state:

1177777,
1/

A physical model?
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A phySicaI mOdel? intelligent states

The result is

f

> The projections of each angular momentum L, 4 and L, g in
the plane perpendicular to their respective axes are circles.

> The projections of each angular momentum L, 4 and L, g in
the plane perpendicular to the average L, is are now ellipses, A physical model?
i.e. squeezed circles.

» The vectors ZXVA, ZX’B Z%A, Zy,B are no longer randomly
distributed on in the plane perpendicular to (L,).

» Explains why there is squeezing for small 3, but not why
squeezing disappears near 5 ~ /2.
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S umma ry intelligent states

Summary:

» Coherent states are usual reference states to establish a
standard quantum limit. Thus, coherent states are never
squeezed.

» Because coherent states are “displacements” of some
reference ket, a careful analysis is required to define squeezing
so it does not depend on such displacements.

> One must establish a local vertical and a resulting system of
axes using the vector (L).

> One must measure average values and fluctuations of
observables defined relative to this new set of axes.

» Every angular momentum intelligent state (except the angular
momentum coherent state) has a regime over which there is
squeezing.

Summary

» For angular momentum intelligent states, squeezing is difficult
to visualize using Wigner distributions.

» A simple but comprehensive model of squeezing remains
elusive.
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