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Overview
I Part 1: Introduction and simple cases

I Basic definitions
I Review of the uncertainty relation
I Intelligence
I Applications

I Part 2: Angular momentum intelligent states
I Introduction and basic properties
I A mathematical interlude
I The method of Lavoie
I The method of Rashid

I Part 3: Squeezing in angular momentum intelligent states.
I x and p squeezing
I What is spin squeezing
I Some results and examples

I Part 4: SU(1, 1) intelligent states
I An associated Schrödinger problem
I SU(1, 1) coupling
I Some results

I Summary
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su(1, 1)
The Lie algebra su(1, 1) occurs in models of parametric
down-conversion. An input classical field α results in the
production of two photons a†b† or a†a†.

I The elements of the algebra are:

K̂x = 1
4

(
a†a† + aa

)
, K̂y = 1

4i

(
a†a† − aa

)
,

K̂0 = 1
4

(
a†a + aa†

)
(1)

I They satisfy

[K̂x , K̂y ] = −i K̂0 , [K̂y , K̂0] = i K̂x , [K̂0, K̂x ] = i K̂y . (2)

I Intelligent states of K̂x and K̂y have been described as
“minimum uncertainty states for amplitude–squared” fields.

I As always, define:

K̂± = K̂x ± i K̂y , (3)

K̂+ = 1
2 a†a†, K̂− = 1

2 a a. (4)
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The 1
4 and 3

4 series
I Let |n〉 be a harmonic oscillator state, with

a†|n〉 =
√

n + 1|n + 1〉 , a|n〉 =
√

n|n − 1〉 (5)

I The state |0〉 satisfies

K̂0|0〉 = 1
4 |0〉 , K̂−|0〉 = 0 , (6)

so it is the bottom state of the k = 1
4 series.

I In the same manner, |1〉 is the bottom state for the k = 3
4

series.
I Thus, use |k ,m〉 to denote states in the k series with

K̂0|k ,m〉 = m|k ,m〉 (7)

I We have the correspondences

|0〉 7→ | 14 ,
1
4 〉 , |1〉 7→ | 34 ,

3
4 〉 . (8)

I Since K̂± cannot change the index k when acting on |k,m〉,
we see the intelligent will belong to the k = 1

4 series n or the
k = 3

4 series and will contain linear combos of even or odd |n〉
states.
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SU(1, 1) intelligence

I Intelligent states of K̂x , K̂y , are solutions to the eigenvalue
equation (

K̂x − iαK̂y

)
|ψ〉 = λ |ψ〉 , (9)

1
2

(
(1− α) K̂+ + (1 + α) K̂−

)
|ψ〉 = λ |ψ〉 (10)

I As K̂± acts within an infinite dimensional space, there is an
infinite number of solutions to the previous equation.
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Associated Schrödinger problem
I Introduce the dummy variable ξ and the identifications

a† → ξ , a→ d
dξ (11)

I Note that
[a†, a] = 1l ↔ [ξ, d

dξ ] = 1l (12)

I Thus we can identify

K̂+ = 1
2a†a† → 1

2ξ
2 , K̂− = 1

2a a→ 1
2

d2

dξ2 (13)

and
|n〉 → ξn

√
n!
. (14)

I The eigenvalue equation for intelligence becomes the
differential equation

1
4 (1 + α) d2

dξ2ψ(ξ) + 1
4 (1− α) ξ2ψ(ξ) = λψ(ξ), (15)

I This is the Schrödinger equation for the harmonic oscillator.
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Associated Schrödinger problem

I The solutions are thus

ψn(ξ) ∼ e−ε ξ
2/2Hn(

√
ε ξ), (16)

= ∼ e−
1
2 εa
†a† Hn(

√
ε a†)|0〉 (17)

= e−εK̂+Hn(
√
ε a†)|0〉 (18)

where

ε =

√
α− 1

α + 1
. (19)

and Hn is the n’th Hermite polynomial.

I For the solution to make sense as an operator equation, we
need |ε| < 1.

I This implies α > 0,
I For 0 < α < 1, ε is purely imaginary,
I For 1 < α, ε is real.
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The case 0 ≤ α < 1.

Assume α > 1, so ε ∈ R.

I Define τ via

α =
1

cosh (τ/2)
, ⇒ ε = i tanh (τ/2) (20)

I Even or odd cases separately:
I For n = 2m, H2m(

√
ε ξ) is a polynomial of degree m in K̂+

acting on |0〉
I for n = 2m + 1, H2m+1(

√
εξ) is a polynomial of degree m in

K̂+ acting on |1〉.
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Partial disentanglement
To continue, start with

ψn(a†) = e−εK̂+Hn(
√
ε a†)|0〉 (21)

I Observe that
e−iτ K̂x = e−εK̂+eβK̂0e−εK̂− , (22)

where
β = −2 ln (cosh (τ/2)) . (23)

I Multiply from the right by eεK̂−e−βK̂0 :

e−εK̂+ = e−iτ K̂x eεK̂−e−βK̂0 , (24)

I Advantages:
I K̂0 acts diagonally,
I K̂− is like a derivative that will act finitely many times since

Hn(
√
εa†)|0〉 is like a polynomial of finite degree,

I K̂x is hermitian and e−iτKx can be calculated using known
SU(1, 1) Wigner D-functions.
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Partial disentanglement

I From:

e−βK̂0
(√
εa†
)p

=
(√
ε cosh (τ/2) a†

)p
e−βK̂0

one shows

e−βK̂0Hn(
√
εa†)|0〉 ∼ Hn(

√
ε cosh(τ/2)a†)|0〉 (25)

I To evaluate (
e
ε
2 a a
)
Hn(
√
ε cosh(τ/2)a†)|0〉. (26)

I Go back to

e
ε
2

d2

dξ2 Hn(
√
ε cosh(τ/2)ξ). (27)

I look at n even and odd separately,
I use properties of Hermite polynomials.
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The case of n even

Consider for simplicity the case where n even. Then:

I Expand the exponential:

e
ε
2

d2

dξ2 H2m(
√
ε cosh (τ/2) ξ)

=
m∑

p=0

1

p!

( ε
2

)p
(

d2p

dξ2p

)
H2m(

√
ε cosh(τ/2)ξ).(28)

I Express this as the series:

f (ξ) = e
ε
2

d2

dξ2 H2m(
√
ε cosh (τ/2) ξ)

= c0 +
c2

2!
ξ2 +

c4

4!
ξ4 + ...

=
m∑

q=0

c2q

(2q)!
ξ2q . (29)
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c0

I In particular,

c0 =
m∑

p=0

1

p!
(−1)p (2 sinh2 (τ/2)

)p (2m)!

(2m − 2p)!
H2m−2p(0)

(30)

I Using

H2m−2p(0) = (−1)m−p (2m − 2p)!

(m − p)!
(31)

we reduce this further to

c0 = (−1)m (2m)!

m!

m∑
p=0

(
2 sinh2 (τ/2)

)p m!

(m − p)!p!
,(32)

= (−1)m (2m)!

m!

(
1 + 2 sinh2 (τ/2)

)m
, (33)

= (−1)m (2m)!

m!
(cosh (τ))m

. (34)
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c2 and c2q

I After similar manipulations:

c2q = (−1)m−q (2i sinh (τ))q (2m)!

(m − q)!
(cosh (τ))m−q

. (35)

I The solution
ψn(ξ) ∼ e−εξ

2/2Hn(
√
εξ) (36)

thus becomes

|ψn〉 = e−iτ K̂x eεK̂−Hn(
√
ε cosh(τ/2) a†)|0〉

= e−iτ K̂x

(
n∑

m=0,2,...,

cm|m〉

)
,

= e−iτ K̂x

 n/2∑
r=0,1,...

cr | 14 , r + 1
4 〉

 . (37)
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Some examples

Write

|ψn〉 = e−iτ K̂x

(
n∑

r=0,2,...,

cr |r〉

)
,

= e−iτ K̂x |ηn〉 (38)

for simplicity.
The first few |ηn〉s are:

|η0〉 = |0〉 ,

|η2〉 =
(
−
√

2 cosh(τ)|0〉+ 2i sinh(τ)|2〉
)
. (39)

Moreover,

〈 14 ,m|e
−iτ K̂x | 14 ,m

′〉 ∼ D1/4
mm′(π/2, τ,−π/2) (40)

where D is an SU(1, 1) Wigner D-function.
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SU(1, 1) coupling
I We recall the product of two intelligent states is also

intelligent.

I Write the associated Schrödinger problem for two
independent intelligent states:

1
4 (1 + α)

(
d2

dξ2
A

+ d2

dξ2
B

)
ψ(ξA, ξB)

+ 1
4 (1− α)

(
ξ2
A + ξ2

B

)
ψ(ξA, ξB) = λψ(ξA, ξB) (41)

I The resulting states are intelligent.

To understand the situation better:

I Write the wavefunction as a function of the operators:

ψ0,0(ξA, ξB) ∼ e−ε(ξ
2
A+ξ2

B )/2 → e−ε(K̂A,++K̂B,+)|0, 0〉 (42)

I Now |0, 0〉 is killed by K̂− and satisfies

K̂0|0, 0〉 = K̂0,A|0〉A|0〉B + K̂0,B |0〉A|0〉B = 1
2 |0, 0〉 (43)
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SU(1, 1) coupling

I Thus,

e−ε(K̂A,++K̂B,+)|0, 0〉 → e−ε(K̂+)| 12 ,
1
2 〉

= |0, 0〉 − ε (|1, 0〉+ |0, 1〉) + . . .

=
∑
m

c
m=

1
2 ,

3
2

(ε) | 12 ,m〉 (44)

I Note also |1, 0〉 − |0, 1〉 is killed by K̂− and is an eigenstate of
K̂0 with eigenvalue 5

2 . Thus,

| 52 ,
5
2 〉 = 1√

2
(|1, 0〉 − |0, 1〉) (45)

I It is also possible to construct linear combinations of states∑
p,q cp,q|p〉|q〉 that are killed by K̂− and are eigenstates of

K̂0 with eigenvalue 1
2 ,

3
2 ,

5
2 ,

7
2 etc.

I We conclude that, when putting together two systems of the
k = 1

4 series, we obtain the resulting values of k = 1
2 ,

3
2 ,

5
2 , . . .
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Constructing higher k solutions by coupling

For k not 1
4 or 3

4 , we have, in general:

K̂±|k ,m〉 =
√

(m ± k)(m ± k + 1)|k ,m ± 1〉 (46)

Using this and following the method of Lavoie for the coupling of
angular momentum:

I If |ψnA
〉 and |ψnB

〉 are intelligent states of the k = 1
4 families,

then |ψnA
〉|ψnB

〉 is intelligent.

I Write
|ψnA
〉 = e−iτ K̂x,A |ηnA

〉 (47)

I Project by inserting the completeness relation for family k:

|ψk
1/4,1/4(τ)〉 = e−iτ K̂x

∑
m

|k ,m〉〈 k ,m | ηnA
; ηnB
〉 ,

= e−iτ K̂x

∑
m

|k ,m〉κk,nA,nB
m (48)
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A recursion relation

We can evaluate 〈 km | ηnA
; ηnB
〉 recursively:

I Start with

〈km|eiτ K̂x

(
K̂x − iαK̂y

)
[|ψnA

〉|ψnB
〉]

= λ〈km|eiτ K̂x e−iτ K̂x [|ηnA
〉|ηnB

〉]
= λ〈 km | ηnA

; ηnB
〉 (49)

I Next,

〈k,m|eiτ K̂x

(
K̂x − iαK̂y

)
e−iτ K̂x [|ηnA

〉|ηnB
〉]

= 〈k ,m|
(
K̂x − iα cosh τ K̂y − iα sinh τ K̂z

)
[|ηnA
〉|ηnB

〉]

= 〈k ,m|
(
K̂− − i tanh τ K̂z

)
[|ηnA
〉|ηnB

〉] (50)

since α = 1/ cosh τ and K̂x − i K̂y = K̂−.
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A recursion relation

I Evaluating the matrix elements:

λ〈 km | ηnA
; ηnB
〉

= 〈k ,m|K̂− [|ηnA
〉|ηnB

〉]− i tanh τ〈k ,m|K̂z [|ηnA
〉|ηnB

〉]
=
√

(k + m)(m − k + 1)〈 k ,m + 1 | ηnA
; ηnB
〉

−im tanh τ〈 k ,m | ηnA
; ηnB
〉 (51)

I Finally, we obtain

〈 k,m+1 | ηnA
; ηnB
〉 =

λ+ im tanh τ√
(m + k)(m − k + 1)

〈 k ,m | ηnA
; ηnB
〉

(52)

I This method allows use to generate all the coefficient from
those for the lowest value m = k .
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Grand Summary
General summary:

I Intelligent states of Â and B̂ satisfy

∆A∆B = 1
2 |〈[Â, B̂]〉|

I The intelligent states |ψ〉 are solutions to(
Â− iαB̂

)
|ψ〉 = λ|ψ〉

where α is real.
I Coherent states are intelligent, but not all intelligent states

are coherent.
I Coherent states are never squeezed.
I Systematic construction method for:

I x̂ and p̂,
I ϕ̂ and L̂z

I L̂x and L̂y

I K̂x and K̂y

I Because they saturate the uncertainty relation, they are a
“natural” set to start an investigation of squeezing properties.
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