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OVG er eW intelligent states

» Part 1: Introduction and simple cases
> Basic definitions
» Review of the uncertainty relation
> Intelligence
> Applications

v

Part 2: Angular momentum intelligent states
» Introduction and basic properties
» A mathematical interlude
» The method of Lavoie
» The method of Rashid

v

Part 3: Squeezing in angular momentum intelligent states.
> x and p squeezing
> What is spin squeezing
> Some results and examples

v

Part 4: SU(1,1) intelligent states
» An associated Schrédinger problem
» SU(1,1) coupling
> Some results

> Summary




su(l, 1) N eligent wates
The Lie algebra su(1,1) occurs in models of parametric
down-conversion. An input classical field « results in the
production of two photons afb' or afaf.

The algebra su(1, 1)

> The elements of the algebra are:
Ke = Z(afa' +aa), K, = + (afal — aa) |
Ko = 1(afa+aal) (1)

» They satisfy

~

K, K1 = —iKo, [K,, Kol =iK., [Ko,K]=1iK,. (2)

> Intelligent states of K, and Ry have been described as
“minimum uncertainty states for amplitude—squared” fields.

> As always, define:
Ke = K.£ik,, (3)
K. = 1afaf, K.=1aa (4)
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T h % an d Serles intelligent states

et |n) be a harmonic oscillator state, with

alln) =vn+1n+1), aln)=+nn—1) (5)

The algebra su(1, 1)

> The state |0) satisfies
Kolo) = zl0),  K-10)=0, (6)

so it is the bottom state of the k = 1 series.

> In the same manner, [1) is the bottom state for the k = 3
series.

» Thus, use |k, m) to denote states in the k series with

Kok, m) = m|k, m) (7)

» We have the correspondences
0) — 13, %) 1) |

47 4

) (8)

Blw

)

Blw

> Since K cannot change the index k when acting on |k, m),
we see the intelligent will belong to the k = 4 series n or the
k = 2 series and will contain linear combos of even or odd |n)
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SU(1,1) intelligence o st

SU(1, 1) intelligence

> Intelligent states of RX, Ry, are solutions to the eigenvalue
equation

Ay, (9)
Alg) (10

(R —iak,) )

%((1_a)f(++(1+a)k—> %)

> As f(i acts within an infinite dimensional space, there is an
infinite number of solutions to the previous equation.




Angular momentum

Associated Schrodinger problem T C
» Introduce the dummy variable ¢ and the identifications
T d 11
@ 57 a df ( ) Associated Schrédinger
problem
> Note that
[af,a] =1« [ %]=1 (12)

» Thus we can identify

K, = 1afat — 12, R,:%aaﬁ%j'—; (13)
and i
my = 2 (14)

» The eigenvalue equation for intelligence becomes the
differential equation

La+a) &) + 11— a) (&) = (), (19)

» This is the Schrodinger equation for the harmonic oscillator.
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Associated Schrodinger problem liget sas

» The solutions are thus

Associated Schrédinger

problem

Un(€) ~ e E2H,(VeE), (16)
= ~e i@l (eat)o) (17)
= e KH,(veah)o) (18)

where

€= E (19)

and H, is the n'th Hermite polynomial.
» For the solution to make sense as an operator equation, we
need |e¢| < 1.
> This implies a > 0,
» For 0 < a < 1, € is purely imaginary,
» For 1< a, € is real.
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The Case O S (0% < ]_ intelligent states

Assume v > 1, so € € R. The case 0 < o < 1

» Define 7 via

1

— o () = € = itanh (7/2) (20)

» Even or odd cases separately:
» For n = 2m, Ham(y/€€) is a polynomial of degree m in K,
acting on |0)
> for n=2m+ 1, Homi1(1/€€) is a polynomial of degree m in
K, acting on |1).
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Partial disentanglement iniliget staes
To continue, start with
vn(a") = =R Hy(veah) o) (21)
» Observe that o o R Untanging he
efITKX — e*EKJreﬁKOe*EK—, (22)
where
B = —2In(cosh (7/2)). (23)
» Multiply from the right by k- g=Bko.
efefﬁr _ efi‘rf(xeef(,efﬁkg, (24)

» Advantages:
» Ko acts diagonally,
» K_ is like a derivative that will act finitely many times since
Ha(y/€a?)|0) is like a polynomial of finite degree,
» Ky is hermitian and e """ can be calculated using known
SU(1,1) Wigner D-functions.




Partial disentanglement
» From:
o BKo (Vea')” = (Vecosh (7/2) a")? e~ Pk
one shows

e PR H,(Veat)|0) ~ Ha(v/€ cosh(r/2)a")[0)

» To evaluate

(e227) H,(+/€cosh(r/2)a")|0).

» Go back to
a2

248 H, (/e cosh(r/2)¢).

> look at n even and odd separately,
> use properties of Hermite polynomials.

Angular momentum
intelligent states

Untangling the
operator

(25)

(26)

(27)




Angular momentum

The case Of n even intelligent states

Consider for simplicity the case where n even. Then:

» Expand the exponential:

M\m

€532 Hypn(v/e cosh (7/2) €)

Th f n even
m e case of n eve

Zlc)(w)Wwammm)

p! deze

» Express this as the series:

F(€) = o34 Hy(Vecosh (7/2)€)
Go+ €&+ 71+

m

> G (29)

qO
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CO intelligent states

> In particular,

m

z_:: 1)P 2 sinh? (7-/2)) (2r$,2_m)2lp)!H2m 2p(0)
(30) e
» Using
m— !
Ham-25(0) = (—1)"7“’(%,,7_?)’3 (31)
we reduce this further to
@ = :O (r/2)) (_'"F!’)!m,(32)
— " 2,:7) (14 2sinh? (7/2))", (33)
(2m)!

= (-7 (cosh (7)) (34)
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C2 an d C2q intelligent states

> After similar manipulations:

_ 2m)! _
— (1) (2isinh (1))~ (cosh (7))
caq = (~1)7 (2isinh (7))" ¢, *Ts (cosh (7). (35)
» The solution ,
Pn(€) ~ e~ 2 Hy(Ve) (36)
thus becomes
W) = e TR e Hy(y/ecosh(r/2) a') o)
_ e—irkx < Z cm|m>> 7
m=0,2,...,
. n/2
= e—ITKx Z C,|%,r—|— %> . (37)

r=0,1,...




Some examples

Write
o n
[Un) = e Ths < Z Cr|r>> )
r=0,2,...,
= e_iTlenn>

for simplicity.
The first few |n,)s are:

|770> = |O> )

) = (=V2cosh(r)0) + 2isinh(7)[2)) .
Moreover,

(L, mle=imR |1 m'y ~ DY (1 /2,7, —7/2)

mm’

where D is an SU(1, 1) Wigner D-function.

Angular momentum
intelligent states

The case of n even

(39)

(40)
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SU( 1 , ].) cou pl I ng intelligent states

> We recall the product of two intelligent states is also
intelligent.

» Write the associated Schrodinger problem for two
independent intelligent states:

H1+0) (55 + ) v(Ents)
+H(1 - 0) (G + €8) ¥(€a E8) = N(n,E5) (41)

SU(1, 1) coupling

> The resulting states are intelligent.

To understand the situation better:
» Write the wavefunction as a function of the operators:

Yo.0(Eas E) ~ e T2 om(RaitRe)i0 0y (42)

> Now |0,0) is killed by K_ and satisfies
Ko|0,0) = Ko,4/0)4[0)& + Ko,8[0)l0)5 = 3[0,0)  (43)
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SU(]., ].) COU pllng intelligent states
» Thus,
eie(RA’++RB'+)|070> — e K+)|2’ 2>
= |0 0>—€(|1 0)—1—\0 1>)—|—
= ZC 1 3(€)[3,m) (44)

272

SU(1, 1) coupling

> Note also [1,0) — |0 1) is killed by K_ and is an eigenstate of
Ko with e|genva|ue . Thus,

13:3) = 55 (11,0) = 10,1)) (45)

> It is also possible to construct linear combinations of states
Zp’ Cp.qlp)|q) that are killed by K_ and are eigenstates of
K() with eigenvalue 2 55 ;’, g, 5 etc.

» We conclude that, when putting together two systems of the

1 ocnpi : : _ 135
k = 7 series, we obtain the resulting values of k = 5,5,3,...
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Constructing higher k solutions by coupling e

3

For k not % or 7, we have, in general:

Kilk,m)y=+/(m+k)(m*k+1)|k,m=*1) (46)

Using this and following the method of Lavoie for the coupling of
angular momentum:

> If |¢,,) and |h,,) are intelligent states of the k = % families, P

solutions by coupling

then |15, ) [tn,) is intelligent.
> Write o
(V) = €A, (47)

» Project by inserting the completeness relation for family k:
I¢f/4,1/4(7)> = o T Z |k7 m>< k,m | MNnas Ting > ,

— o ik Z |k, m)kna:ne (48)
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A recursion relation el st

We can evaluate ( km|n,,; nns ) recursively:

» Start with
(hamle/™ (K — iR, ) [1tn)ing)]
= )‘<km|eiTKXe_iTKX (17040 710s)]
= A(km [ 1y g ) (49)
A recursion relation
» Next,

(e mle™ (K = iR, ) ™7 [l ), )]
= (k, m| (K — iacosh 7K, — i sinmkz) 17 76 )]

= (k,m| (K- = itanh 7. ) [110,) 10s)] (50)

since a = 1/cosh 7 and K, — iK, = K_.
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A recursion relation el st

» Evaluating the matrix elements:

ACkm | 1n,; Mg )
= (k, m|K= [[0n,)1ng)] — i tanh 7(k, m|K; [[n,) |11ng)]
= V/(k+m)(m—k+1)(k,m+ 1|0, Nng )
—imtanh 7(k, m|0ni Mng ) (51)

A recursion relation

» Finally, we obtain

A+ imtanh 7
V(m+k)(m—k+1)

(ks m | g Mg )
(52)

(ks m+1 {0,005 ) =

» This method allows use to generate all the coefficient from
those for the lowest value m = k.
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Grand Summary intelligent states
General summary:
> Intelligent states of A and B satisfy

AALB = 3[([A, B])|

> The intelligent states |¢)) are solutions to

(A= iaB) v) = Alp)

where « is real.

» Coherent states are intelligent, but not all intelligent states
are coherent.

Grand Summary

» Coherent states are never squeezed.
» Systematic construction method for:
> X and p,
> ¢ and ZZ
> ZAX and ZAy
» K and K,
» Because they saturate the uncertainty relation, they are a
“natural” set to start an investigation of squeezing properties.




Environment  Environnement
l*l Canada Canada
Home = Current Conditions and Forecasts » Onftario =

Thunder Bay

Current Conditions
Chserved at: Thunder Bay Airport

Date: 10:00 AM EDT Thursday 16 April 2009
3 Condition; Mainly Sunny Temperature:
Pressure: 103.2 kPa Crewpoirt:
5 o Tendency : rising Hurnidity :
Visibility: 32 km Wind:
Forecast
Today Fri Sat Sun Mon
% d‘r‘-’:" %
185 17°C 40 Lz LS
29 oec =50 0
40% B60%

Issued : 5.30 saM EDT Thursday 16 April 2009

Canadi

5.2°C
-3.6°C
53 %

calm

Wed
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